Почвоведение, 2023, № 11, стр. 1357-1370

Vis-NIR спектроскопия для целей оценки содержания органического углерода почв (метаанализ)

А. В. Чинилин a*, Г. В. Виндекер a, И. Ю. Савин ab

a Почвенный институт им. В.В. Докучаева
119017 Москва, Пыжевский пер., 7, стр. 2, Россия

b Российский университет дружбы народов, Институт экологии
115093 Москва, Подольское ш., 8, стр. 5, Россия

* E-mail: chinilin_av@esoil.ru

Поступила в редакцию 10.04.2023
После доработки 19.06.2023
Принята к публикации 21.06.2023

Аннотация

Выполнен обзор и метаанализ научных статей, посвященных оценке содержания органического углерода почв с применением подходов Vis-NIR спектроскопии. В обзор вошло 134 исследования, опубликованных в период с 1986 по 2022 гг. с общей выборкой в 709 значений количественных метрик. Поиск статей проводили в научных поисковых системах: РИНЦ, Science Direct, Scopus, Google Scholar по ключевым словосочетаниям: “спектроскопия почв” и “Vis-NIR spectroscopy AND soil organic carbon”. В процессе метаанализа при помощи непараметрического одностороннего дисперсионного анализа Краскела–Уоллиса в совокупности с непараметрическим методом попарного сравнения выполняли определение наличия статистически значимой разницы между медианными значениями принятых количественных метрик предсказательной силы моделей (коэффициента детерминации ($R_{{{{{\text{cv}}} \mathord{\left/ {\vphantom {{{\text{cv}}} {{\text{val}}}}} \right. \kern-0em} {{\text{val}}}}}}^{2}$), корня среднеквадратичной оценки (RMSE) и отношения производительности к отклонению (performance to deviation, RPD)). В результате выявлена наилучшая эффективность метода предварительной обработки спектральных кривых. Проведено сравнение результатов оценки содержания органического углерода почв между методом спектроскопии в лаборатории и в полевых условиях.

Ключевые слова: бесконтактное зондирование, прогноз, алгоритмы, калибровка моделей, валидация

Список литературы

  1. Андроников В.Л. О спектральной отражательной способности некоторых почв лесостепи // Изв. АН СССР. Сер. геогр. 1958. № 3. С. 93–97.

  2. Караванова Е.И. Оптические свойства почв и их природа. М.: Изд-во МГУ, 2003. 151 с.

  3. Карманов И.И. Спектральная отражательная способность и цвет почв как показатель их свойств. М.: Колос, 1974. 351 с.

  4. Карманов И.И. Изучение почв по спектральному составу отраженных излучений // Почвоведение. 1970. № 4. С. 34–47.

  5. Кононова М.М. Органическое вещество почвы. Его природа, свойства и методы изучения. М.: Изд-во АН СССР, 1963. 314 с.

  6. Ливеровский Ю.А. Применение аэрометодов при изучении почвенного покрова // Аэрометоды изучения природных ресурсов. М.: Географгиз, 1962. С. 115–129.

  7. Михайлова Н.А., Орлов Д.С. Оптические свойства почв и почвенных компонентов. М.: Наука, 1986. 118 с.

  8. Орлов Д.С., Суханова Н.И., Розанова М.С. Спектральная отражательная способность почв и их компонентов. М.: Изд-во МГУ, 2001. 176 с.

  9. Родионова О.Е., Померанцев А.Л. Хемометрика: достижения и перспективы // Успехи химии. № 4. С. 302–321.

  10. Савин И.Ю., Виндекер Г.В. Некоторые особенности использования оптических свойств почв поверхности для определения их влажности // Почвоведение. 2021. № 7. С. 806–814. https://doi.org/10.31857/S0032180X21070121

  11. Толчельников Ю.С. Оптические свойства ландшафта (применительно к аэросъемке). Л.: Наука, 1974. 252 с.

  12. Barra I., Haefele S.M., Sakrabani R., Kebede F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances – A review // TrAC Trends Anal. Chem. 2021. V. 135. https://doi.org/10.1016/j.trac.2020.116166

  13. Behrens T., Viscarra Rossel R.A., Ramirez-Lopez L., Baumann P. Soil spectroscopy with the Gaussian pyramid scale space // Geoderma. 2022. V. 426. https://doi.org/10.1016/j.geoderma.2022.116095

  14. Ben Dor E., Ong C., Lau I.C. Reflectance measurements of soils in the laboratory: Standards and protocols // Geoderma. 2015. V. 245–246. P. 112–124. https://doi.org/10.1016/j.geoderma.2015.01.002

  15. Buddenbaum H., Steffens M. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy // Appl. Environ. Soil Sci. 2012. V. 2012. P. 1–12. https://doi.org/10.1155/2012/274903

  16. Castaldi F. Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands // Remote Sens. 2021. V. 13. https://doi.org/10.3390/rs13173345

  17. Castaldi F., Chabrillat S., Chartin C., Genot V., Jones A.R., van Wesemael B. Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database // Eur. J. Soil Sci. 2018b. V. 69. P. 592–603. https://doi.org/10.1111/ejss.12553

  18. Castaldi F., Chabrillat S., Don A., van Wesemael B. Soil organic carbon mapping using LUCAS topsoil database and sentinel-2 data: an approach to reduce soil moisture and crop residue effects // Remote Sens. 2019. V. 11. https://doi.org/10.3390/rs11182121

  19. Castaldi F., Chabrillat S., Jones A., Vreys K., Bomans B., van Wesemael B. Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database // Remote Sens. 2018. V. 10. https://doi.org/10.3390/rs10020153

  20. Chakraborty S., Li B., Weindorf D.C., Morgan C.L.S. External parameter orthogonalisation of Eastern European VisNIR-DRS soil spectra // Geoderma. 2019. V. 337. P. 65–75. https://doi.org/10.1016/j.geoderma.2018.09.015

  21. Chinilin A.V., Savin I.Yu. Comparison of the effectiveness of various ways of preprocessing spectrometric data in order to predict the concentration of organic soil carbon // J. Opt. Technol. 2018. V. 85. P. 789–795. https://doi.org/10.1364/JOT.85.000789

  22. Coblinski J.A., Giasson É., Demattê J.A.M., Dotto A.C., Costa J.J.F., Vašát R. Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths // Catena. 2020. V.  89. https://doi.org/10.1016/j.catena.2020.104485

  23. Condit H.R. The spectral reflectance of American soils // Photogramm. Eng. 1970. V. 36. P. 955–966.

  24. Dotto A.C., Dalmolin R.S.D., ten Caten A., Grunwald S. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra // Geoderma. 2018. V. 314. P. 262–274. https://doi.org/10.1016/j.geoderma.2017.11.006

  25. Gholizadeh A., Coblinski J.A., Saberioon M., Ben-Dor E., Drábek O., Demattê J.A.M., Borůvka L. vis–NIR and XRF Data Fusion and Feature Selection to Estimate Potentially Toxic Elements in Soil // Sensors. 2021. V. 21. https://doi.org/10.3390/s21072386

  26. Gholizadeh A., Viscarra Rossel R.A., Saberioon M., Borůvka L., Kratina J., Pavlů L. National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic // Geoderma. 2021b. V. 385. https://doi.org/10.1016/j.geoderma.2020.114832

  27. Gozukara G., Akça E., Dengiz O., Kapur S., Adak A. Soil particle size prediction using Vis-NIR and pXRF spectra in a semiarid agricultural ecosystem in Central Anatolia of Türkiye // Catena. 2022. V. 217. https://doi.org/10.1016/j.catena.2022.106514

  28. Gozukara G., Hartemink A.E., Zhang Y. Soil Catena characterization using pXRF and Vis-NIR spectroscopy in Northwest Turkey // Eurasian Soil Sci. 2021. V. 54. P. 1–15. https://doi.org/10.1134/S1064229322030061

  29. Hong Y., Chen Y., Chen S., Shen R., Guo L., Liu Y., Mounem Mouazen A. Improving spectral estimation of soil inorganic carbon in urban and suburban areas by coupling continuous wavelet transform with geographical stratification // Geoderma. 2023. V. 430. https://doi.org/10.1016/j.geoderma.2022.116284

  30. Igne B., Reeves J.B., McCarty G., Hively W.D., Lund E., Hurburgh C.R. Evaluation of spectral pretreatments, partial least squares, least squares support vector machines and locally weighted regression for quantitative spectroscopic analysis of soils // J. Near Infrared Spectrosc. 2010. V. 18. P. 167–176. https://doi.org/10.1255/jnirs.883

  31. Khayamim F., Wetterlind J., Khademi H., Robertson A.H.J., Cano A.F., Stenberg B. Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan, Iran // J. Near Infrared Spectrosc. 2015. V. 23. P. 155–165. https://doi.org/10.1255/jnirs.1157

  32. Knadel M., Castaldi F., Barbetti R., Ben-Dor E., Gholizadeh A., Lorenzetti R. Mathematical techniques to remove moisture effects from visible–near-infrared–shortwave-infrared soil spectra – review // Appl. Spectrosc. Rev. 2022. P. 1–34. https://doi.org/10.1080/05704928.2022.2128365

  33. Knox N.M.M., Grunwald S., McDowell M.L.L., Bruland G.L.L., Myers D.B.B., Harris W.G.G. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy // Geoderma. 2015. V. 239–240. P. 229–239. https://doi.org/10.1016/j.geoderma.2014.10.019

  34. Kuhn M., Johnson K. Applied Predictive Modeling. N.Y.: Springer. 2013. 600 p. https://doi.org/10.1007/978-1-4614-6849-3

  35. Li S., Viscarra Rossel R.A., Webster R. The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13202

  36. Liu Y., Pan X.-Z.X., Wang C., Li Y., Shi R. Predicting soil salinity with Vis–NIR spectra after removing the effects of soil moisture using external parameter orthogonalization // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0140688

  37. Mallat S.G. A theory for multiresolution signal decomposition: the wavelet representation // IEEE Trans. Pattern Anal. Mach. Intell. 1989. V. 11. P. 674–693. https://doi.org/10.1109/34.192463

  38. Martens H., Næs T. Multivariate calibration // Chemometrics. Netherlands, Dordrecht: Springer. 1984. P. 147–156. https://doi.org/10.1007/978-94-017-1026-8_5

  39. McBride M.B. Estimating soil chemical properties by diffuse reflectance spectroscopy: Promise versus reality // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13192

  40. Mendes W. de S., Demattê J.A.M., Bonfatti B.R., Resende M.E.B., Campos L.R., da Costa A.C.S. A novel framework to estimate soil mineralogy using soil spectroscopy // Appl. Geochem. 2021. V. 127. https://doi.org/10.1016/j.apgeochem.2021.104909

  41. Minasny B., McBratney A.B. Digital soil mapping: A brief history and some lessons // Geoderma. 2016. V. 264. P. 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017

  42. Molnar C. Interpretable Machine Learning: A Guide For Making Black Box Models Explainable. 2022. https://christophm.github.io/interpretable-ml-book/

  43. Morellos A., Pantazi X.-E., Moshou D., Alexandridis T., Whetton R., Tziotzios G., Wiebensohn J. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy // Biosyst. Eng. 2016. V. 152. P. 104–116. https://doi.org/10.1016/j.biosystemseng.2016.04.018

  44. Moura-Bueno J.M., Dalmolin R.S.D., ten Caten A., Dotto A.C., Demattê J.A.M. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions // Geoderma. 2019. V. 337. P. 565–581. https://doi.org/10.1016/j.geoderma.2018.10.015

  45. Muñoz J.D., Kravchenko A. Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs // Geoderma. 2011. V. 166. P. 102–110. https://doi.org/10.1016/j.geoderma.2011.07.017

  46. Ng W., Malone B., Minasny B., Jeon S. Near and mid infrared soil spectroscopy // Reference Module in Earth Systems and Environmental Sciences. Elsevier, 2022. https://doi.org/10.1016/B978-0-12-822974-3.00022-7

  47. Ng W., Minasny B., McBratney A. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy // Sci. Total Environ. 2020. V. 702. https://doi.org/10.1016/j.scitotenv.2019.134723

  48. Patil I. Visualizations with statistical details: The “ggstatsplot” approach // J. Open Source Softw. 2021. V. 6. https://doi.org/10.21105/joss.03167

  49. Poppiel R.R., Paiva A.F. da S., Demattê J.A.M. Bridging the gap between soil spectroscopy and traditional laboratory: Insights for routine implementation // Geoderma. 2022. V. 425. https://doi.org/10.1016/j.geoderma.2022.116029

  50. Prudnikova E., Savin I.Yu. Some Peculiarities of Arable Soil Organic Matter Detection Using Optical Remote Sensing Data // Remote Sens. 2021. V. 13. https://doi.org/10.3390/rs13122313

  51. Ramos P.V., Inda A.V., Barrón V., Siqueira D.S., Marques Júnior J., Teixeira D.D.B. Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy // Catena. 2020. V. 193. https://doi.org/10.1016/j.catena.2020.104609

  52. Rehman H.U., Knadel M., Jonge L.W., Moldrup P., Greve M.H., Arthur E. Comparison of cation exchange capacity estimated from Vis–NIR spectral reflectance data and a pedotransfer function // Vadose Zo. J. 2019. V. 18. P. 1–8. https://doi.org/10.2136/vzj2018.10.0192

  53. Roudier P., Hedley C.B., Lobsey C.R., Viscarra Rossel R.A., Leroux C. Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon // Geoderma. 2017. V. 296. P. 98–107. https://doi.org/10.1016/j.geoderma.2017.02.014

  54. dos Santos U.J., Demattê J.A.M., Menezes R.S.C., Dotto A.C., Guimarães C.C.B., Alves B.J.R., Primo D.C. Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil // Geoderma Reg. 2020. V. 23. https://doi.org/10.1016/j.geodrs.2020.e00333

  55. Savin I.Y., Shishkin M.A., Sharychev D.V. Peculiarities of spectral reflectance of fractions with sizes from 20 to 5,000 microns in soil samples // Dokuchaev Soil Bull. 2022. V. 112. P. 24–47. https://doi.org/10.19047/0136-1694-2022-112-24-47

  56. Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures // Anal. Chem. 1964. V. 36. P. 1627–1639. https://doi.org/10.1021/ac60214a047

  57. Slaughter D.C., Pelletier M.G., Upadhyaya S.K. Sensing soil moisture using NIR spectroscopy // Appl. Eng. Agric. 2001. V. 17. https://doi.org/10.13031/2013.5449

  58. Song Y., Shen Z., Wu P., Viscarra Rossel R.A. Wavelet geographically weighted regression for spectroscopic modelling of soil properties // Sci. Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-96772-z

  59. Sorenson P.T., Small C., Tappert M.C., Quideau S.A., Drozdowski B., Underwood A., Janz A. Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy // Can. J. Soil Sci. 2017. V. 97. P. 241–248. https://doi.org/10.1139/cjss-2016-0116

  60. Soriano-Disla J.M.J.M., Janik L.J., Viscarra Rossel R.A., MacDonald L.M., McLaughlin M.J. The Performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties // Appl. Spectrosc. Rev. 2014. V. 49. P. 139–186. https://doi.org/10.1080/05704928.2013.811081

  61. Steffens M., Zeh L., Rogge D.M., Buddenbaum H. Quantitative mapping and spectroscopic characterization of particulate organic matter fractions in soil profiles with imaging VisNIR spectroscopy // Sci. Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-95298-8

  62. Stenberg B., Viscarra Rossel R.A., Mouazen A.M., Wetterlind J. Visible and near infrared spectroscopy in soil science // Adv. in Agr. 2010. V. 107. P. 163–215. https://doi.org/10.1016/S0065-2113(10)07005-7

  63. Stevens A., Nocita M., Tóth G., Montanarella L., van Wesemael B. Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy // PLoS One. 2013. V. 8. https://doi.org/10.1371/journal.pone.0066409

  64. Stevens A., Ramirez-Lopez L. An introduction to the “prospectr” package. R package version 0.2.6. https://cran.r-project.org/package=prospectr

  65. Tziolas N., Tsakiridis N., Ogen Y., Kalopesa E., Ben-Dor E., Theocharis J., Zalidis G. An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs // Remote Sens. Environ. 2020. V. 244. https://doi.org/10.1016/j.rse.2020.111793

  66. Viscarra Rossel R.A., Behrens T., Ben-Dor E., Chabrillat S., Demattê J.A.M., Ge Y., Gomez C. Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13271

  67. Viscarra Rossel R.A., Bui E.N., De Caritat P., McKenzie N.J. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra // J. Geophys. Res. Earth Surf. 2010. V. 115. https://doi.org/10.1029/2009JF001645

  68. Viscarra Rossel R.A., Cattle S.R., Ortega A., Fouad Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy // Geoderma. 2009. V. 150. P. 253–266. https://doi.org/10.1016/j.geoderma.2009.01.025

  69. Viscarra Rossel R.A., Hicks W.S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions // Eur. J. Soil Sci. 2015. V. 66. P. 438–450. https://doi.org/10.1111/ejss.12237

  70. Viscarra Rossel R.A., Jeon Y.S., Odeh I.O.A., McBratney A.B. Using a legacy soil sample to develop a mid-IR spectral library // Soil Res. 2008. V. 46. https://doi.org/10.1071/SR07099

  71. Viscarra Rossel R.A., McBratney A.B., Minasny B. Proximal Soil Sensing. N.Y.: Springer, 2010. 468 p. https://doi.org/10.1007/978-90-481-8859-8

  72. Wadoux A.M.J.-C., Malone B., Minasny B., Fajardo M., McBratney A.B. Soil Spectral Inference with R. N.Y.: Springer, 2021. 247 p. https://doi.org/10.1007/978-3-030-64896-1

  73. Wan M., Hu W., Qu M., Li W., Zhang C., Kang J., Hong Y. Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy // Geoderma. 2020. V. 363. https://doi.org/10.1016/j.geoderma.2019.114163

  74. Wang X., Zhang Y., Atkinson P.M., Yao H. Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images // Int. J. Appl. Earth Obs. Geoinf. 2020. V. 92. https://doi.org/10.1016/j.jag.2020.102182

  75. Wang Y., Huang T., Liu J., Lin Z., Li S., Wang R., Ge Y. Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy // Comput. Electron. Agric. 2015. V. 111. P. 69–77. https://doi.org/10.1016/j.compag.2014.11.019

  76. Wetterlind J., Viscarra Rossel R.A., Steffens M. Diffuse reflectance spectroscopy characterises the functional chemistry of soil organic carbon in agricultural soils // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13263

  77. Xiaobo Z., Jiewen Z., Povey M.J.W., Holmes M., Hanpin M. Variables selection methods in near-infrared spectroscopy // Anal. Chim. Acta. 2010. V. 667. P. 14–32. https://doi.org/10.1016/j.aca.2010.03.048

  78. Xu S., Zhao Y., Wang M., Shi X. Quantification of Different Forms of Iron from Intact Soil Cores of Paddy Fields with Vis-NIR Spectroscopy // Soil Sci. Soc. Am. J. 2018. V. 82. P. 1497–1511. https://doi.org/10.2136/sssaj2018.01.0014

  79. Yang Y., Shen Z., Bissett A., Viscarra Rossel R.A. Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions // Soil. 2022. V. 8. P. 223–235. https://doi.org/10.5194/soil-8-223-2022

  80. Yang Y., Viscarra Rossel R.A., Li S., Bissett A., Lee J., Shi Z., Behrens T., Court L. Soil bacterial abundance and diversity better explained and predicted with spectro-transfer functions // Soil Biol. Biochem. 2019. V. 129. P. 29–38. https://doi.org/10.1016/j.soilbio.2018.11.005

  81. Zhong L., Guo X., Xu Z., Ding M. Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks // Geoderma. 2021. V. 402. https://doi.org/10.1016/j.geoderma.2021.115366

  82. Zhou Y., Chen S., Hu B., Ji W., Li S., Hong Y., Xu H. Global soil salinity prediction by open soil Vis-NIR spectral library // Remote Sens. 2022. V. 14. https://doi.org/10.3390/rs14215627

  83. Ziechmann W. Spectroscopic investigations of lignin, humic substances and peat // Geochim. Cosmochim. Acta. 1964. V. 28. P. 1555–1566. https://doi.org/10.1016/0016-7037(64)90006-7

Дополнительные материалы отсутствуют.