Известия РАН. Механика твердого тела, 2023, № 6, стр. 155-164

ВЛИЯНИЕ СРЕДНЕГО ДАВЛЕНИЯ НА СОБСТВЕННЫЕ ЧАСТОТЫ КОЛЕБАНИЙ УГЛЕРОДНОЙ НАНОТРУБКИ

А. Г. Хакимов a*

a Институт механики им. Р.Р. Мавлютова УФИЦ РАН
Уфа, Россия

* E-mail: hakimov@anrb.ru

Поступила в редакцию 27.03.2023
После доработки 03.05.2023
Принята к публикации 10.05.2023

Аннотация

Определяются частоты изгибных колебаний углеродной нанотрубки (УНТ) по полубезмоментной теории. Дается вывод выражения распределенной поперечной нагрузки на УНТ в предположении ее цилиндрического изгиба. Поверхности УНТ контактируют со средой разной плотности и давления. Среда может быть сжимаемой в процессе деформации поверхности и несжимаемой. Определяется влияние на изгиб среднего давления и изменения кривизны срединной поверхности, а также присоединенной массы газовой среды.

Ключевые слова: УНТ, газ, плотность, давление, присоединенная масса

Список литературы

  1. Гонткевич В.С. Собственные колебания оболочек в жидкости. Киев: Наукова думка, 1964. 103 с.

  2. Ильгамов М.А. Колебания упругих оболочек, содержащих жидкость и газ. М.: Наука, 1969. 182 с.

  3. Попов A.Л., Чернышев Г.Н. Механика звукоизлучения пластин и оболочек. М.: Физматлит, 1994. 208 с.

  4. Дяченко И.А., Миронов А.А. Аналитические и численные исследования свободных колебаний цилиндрических оболочек с акустической средой // Проблемы прочности и пластичности. 2021. Т. 83. № 1. С. 35–48. https://doi.org/10.32326/1814-9146-2021-83-1-35-48

  5. Leizerovich G.S., Taranukha N.A. Nonobvious features of dynamics of circular cylindrical shells // Mech. Solids. 2008. V. 43. № 2. P. 246–253. https://doi.org/10.3103/S0025654408020106

  6. Rawat A., Matsagar V., Nagpal A. Finite element analysis of thin circular cylindrical shells // Proc. Indian National Sci. Acad. 2016. V. 82. № 2. P. 349–355. https://doi.org/10.16943/ptinsa/2016/48426

  7. Farshidianfar A., Oliazadeh P. Free vibration analysis of circular cylindrical shells: comparison of different shell theories // Int. J. Mech. Appl. 2012. V. 2 (5). P. 74–80. https://doi.org/10.5923/j.mechanics.20120205.04

  8. O’Connell A.D., Hofheinz M., Ansmann M. et al. Quantum ground state and single-phonon control of a mechanical resonator // Nature. 2010. № 464. P. 697–703. https://doi.org/10.1038/nature08967

  9. Burg T.P., Godin M., Knudsen S.M. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid // Nature. 2007. № 446. P. 1066–1069. https://doi.org/10.1038/nature05741

  10. Husale S., Persson H.H.J., Sahin O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets // Nature. 2009. № 462. P. 1075–1078. https://doi.org/10.1038/nature08626

  11. Bleich H.H., Baron M.L. Free and Forced vibration of an infinitely long cylindrical shell in an infinite acoustic medium // J. Appl. Mech. Trans. ASME. 1954. V. 21. № 2. P. 167–177.

  12. Sirenko Y.M., Stroscio M.A., Kim K.W. Elastic vibrations of microtubules in a fluid // Phys. Rev. 1996. V. 53. № 1. P. 1003–1010.

  13. Дмитриев С.В., Ильгамов М.А. Радиальная реакция углеродной нанотрубки на динамическое давление // ДАН. Физика. Технические науки. 2021. Т. 501. № 1. С. 8–13. https://doi.org/10.31857/S2686740021060080

  14. Ильгамов М.А. Влияние давления окружающей среды на изгиб тонкой пластины и пленки // ДАН. 2017. Т. 476. № 4. С. 402–405. https://doi.org/10.7868/S086956521728009X

  15. Ильгамов М.А. Влияние поверхностных эффектов на изгиб и колебания нанопленок // ФТТ. 2019. Т. 61. № 10. С. 1825–1830.

  16. Ilgamov M.A., Khakimov A.G. Influence of pressure on the frequency spectrum of micro and nanoresonators on hinged supports // J. Appl. Comput. Mech. 2021. V. 7. № 2. P. 977–983. https://doi.org/10.22055/jacm.2021.36470.2848

  17. Дмитриев С.В., Сунагатова И.Р., Ильгамов М.А., Павлов И.С. Собственные частоты радиальных колебаний углеродных нанотрубок // ЖТФ. 2021. Т. 91. Вып. 11. С. 1732–1737. https://doi.org/10.21883/JTF.2021.11.51536.127-21

  18. Dmitriev S.V., Semenov A.S., Savin A.V., Ilgamov M.A., Bachurin D.V. Rotobreather in a carbon nanotube bundle // J. Micromech. Mol. Phys. 2020. V. 5. № 3. 2050010. https://doi.org/10.1142/S2424913020500101

  19. Harik V.M. Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods// Solid State Commun. 2001. V. 120. № 7–8. P. 331–335. https://doi.org/10.1016/S0038-1098(01)00383-0

  20. Qian D., Wagner G.J., Lin W.K., Ju M.F., Ruoff R.S. Mechanics of carbon nanotubes // Appl. Mech. Rev. 2002. V. 55. № 6. P. 495–532. https://doi.org/10.1115/1.1490129

  21. Елецкий А.В. Механические свойства углеродных нанотрубок и материалов на их основе // Успехи физических наук. 2007. Т. 177. № 3. С. 233–274. https://doi.org/10.3367/UFNr.0177.200703a.0233

  22. Ильгамов М.А. Перестройка гармоник при изгибе цилиндрической оболочки вследствие динамического сжатия // ПМТФ. 2011. Т. 52. № 3. С. 167–174.

  23. Timoshenko S.P., Young D.H., Weaver W. Vibration problems in engineering. New York: John Wiley & Sons, 1974.

  24. Wu J., Zang J., Larade B. et al. Computational design of carbon nanotube electromechanical pressure sensors // Phys. Rev. B. 2004. V. 69. P. 153406. https://doi.org/10.1103/PhysRevB.69.153406

  25. Хакимов А.Г. К статической устойчивости формы поперечного сечения трубопровода, цилиндрической оболочки, углеродной нанотрубки // Изв. РАН. МТТ. 2023. № 1. С. 95–101. https://doi.org/10.31857/S0572329922060101

Дополнительные материалы отсутствуют.