Коллоидный журнал, 2023, T. 85, № 6, стр. 727-737

Роль диспергированных частиц в физико-химическом поведении нанофлюидов#

А. М. Емельяненко 1*, Л. Б. Бойнович 1

1 Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
119071 Москва, Ленинский просп. 31, корп. 4, Россия

* E-mail: ame@phyche.ac.ru

Поступила в редакцию 20.09.2023
После доработки 15.10.2023
Принята к публикации 16.10.2023

Аннотация

Нанодисперсии могут быть использованы для решения различных практических задач, таких как повышение эффективности систем теплоснабжения, охлаждение электрооборудования, повышение нефтеотдачи и т.д., поскольку диспергирование наночастиц в жидких средах обеспечивает недорогой и удобный способ значительно улучшить различные функциональные свойства базовой жидкости. Хотя исследования влияния дисперсных частиц на поверхностные явления в системах с участием нанофлюидов проводятся более 30 лет, вследствие ряда факторов задача последовательного и согласованного описания поведения нанофлюидов, по-видимому, останется в центре внимания ученых в ближайшие десятилетия. В данной работе представлен краткий обзор недавно опубликованных результатов, имеющих общее значение для понимания поведения поверхностного натяжения нанофлюидов, а также процессов, происходящих при смачивании и растекании наножидкостей по различным поверхностям.

Ключевые слова: смачивание, растекание, поверхностное натяжение, нанофлюид

Список литературы

  1. Buongiorno J. Convective transport in nanofluids // ASME Journal of Heat and Mass Transfer. 2006. V. 128. № 3. P. 240–250. https://doi.org/10.1115/1.2150834

  2. Ali I., Pakharukov Y.V., Shabiev F.K., Galunin E.V., Safargaliev R.F., Vasiljev S.A., Ezdin B.S., Burakov A.E., Alothman Z.A., Sillanpää M. Preparation of graphene based nanofluids: Rheology determination and theoretical analysis of the molecular interactions of graphene nanoparticles // Journal of Molecular Liquids. 2023. V. 390. P. 122954. https://doi.org/10.1016/j.molliq.2023.122954

  3. Широких С.А., Клевцова Е.О., Савченко А.Г., Королева М.Ю. Устойчивость обратных высококонцентрированных эмульсий с магнитными наночастицами и структура высокопористых полимеров, образующихся из таких эмульсий // Коллоид. журн. 2021. Т. 83. № 6. С. 727–737. https://doi.org/10.31857/S0023291221060124

  4. Hernaiz M., Alonso V., Estellé P., Wu Z., Sundén B., Doretti L., Mancin S., Çobanoglu N., Karadeniz Z.H., Garmendia N., Lasheras-Zubiate M., Hernández López L., Mondragón R., Martínez-Cuenca R., Barison S., Kujawska A., Turgut A., Amigo A., Huminic G., Huminic A., Kalus M.-R., Schroth K.-G., Buschmann M.H. The contact angle of nanofluids as thermophysical property // Journal of Colloid and Interface Science. 2019. V. 547. P. 393–406. https://doi.org/10.1016/j.jcis.2019.04.007

  5. Ребиндер П.А., Фукс Г.И. Проблемы современной коллоидной химии. В кн.: Ребиндер П.А. Поверхностные явления в дисперсных системах. Коллоидная химия. Избранные труды. М.: Наука, 1978. С. 49–54.

  6. Choi S.U., Eastman J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab. (ANL), Argonne, IL (United States), 1995. https://www.osti.gov/servlets/purl/196525 (Дата обращения: 30.04.2023).

  7. Интернет-сайт ООО “Термоконтур” [Владимир, 2003–2023]. URL: https://termo-systema.ru/index.php-option=com_content&view=article&id=63-lamda&catid=35-artikle-&Itemid=89.htm (Дата обращения: 05.10.2023).

  8. Prasad T.R., Krishna K.R., Sharma K.V., Mantravadi N. Viscosity and thermal conductivity of cobalt and silica nanofluid in an optimum mixture of glycerol and water // Colloid Journal. 2022. V. 84. P. 208–221. https://doi.org/10.1134/S1061933X22020090

  9. Sinha S., Filippov A.N. Time dependent magnetohydrodynamic flow of CuO/Al2O3/TiO2 water based nanofluid along a vertical permeable stretching surface // Colloid Journal. 2021. V. 83. P. 500–512. https://doi.org/10.1134/S1061933X21040116

  10. Vallejo J.P., Prado J.I., Lugo L. Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research // Applied Thermal Engineering. 2021. V. 203. P. 117926. https://doi.org/10.1016/j.applthermaleng.2021.117926

  11. Milanese M., Micali F., Colangelo G., de Risi A. Experimental evaluation of a full-scale HVAC system working with nanofluid // Energies. 2022. V. 15. P. 2902. https://doi.org/10.3390/en15082902

  12. Can A., Selimefendigil F., Öztop H.F. A review on soft computing and nanofluid applications for battery thermal management // Journal of Energy Storage. 2022. V. 53. P. 105214. https://doi.org/10.1016/j.est.2022.105214

  13. Hussain M., Mir F.A., Ansari M.A. Nanofluid transformer oil for cooling and insulating applications: A brief review // Applied Surface Science Advances. 2022. V. 8. P. 100223. https://doi.org/10.1016/j.apsadv.2022.100223

  14. Das N.K., Santra S., Naik P.K., Vasa M.S., Raj R., Bose S., Banerjee T. Evaluation of thermophysical properties and thermal performance of amine-functionalized graphene oxide/deep eutectic solvent nanofluids as heat-transfer media for desalination systems // ACS Sustainable Chem. Eng. 2023. V. 11. № 14. P. 5376–5389. https://doi.org/10.1021/acssuschemeng.2c06325

  15. Rafiei A., Loni R., Mahadzir S.B., Najafi G., Sadeghzadeh M., Mazlan M., Ahmadi M.H. Hybrid solar desalination system for generation electricity and freshwater with nanofluid application: Energy, exergy, and environmental aspects // Sustainable Energy Technologies and Assessments. 2022. V. 50. P. 101716. https://doi.org/10.1016/j.seta.2021.101716

  16. Varma V.B., Cheekati S.K., Pattanaik M.S., Ramanujan R.V. A magnetic nanofluid device for excellent passive cooling of light emitting diodes // Energy Reports. 2022. V. 8. P. 7401–7419. https://doi.org/10.1016/j.egyr.2022.05.237

  17. Tembhare S.P., Barai D.P., Bhanvase B.A. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review // Renewable and Sustainable Energy Reviews. 2022. V. 153. P. 111738. https://doi.org/10.1016/j.rser.2021.111738

  18. Minakov A.V., Pryazhnikov M.I., Zhigarev V.A., Rudyak V.Y., Filimonov S.A. Numerical study of the mechanisms of enhanced oil recovery using nanosuspensions // Theoretical and Computational Fluid Dynamics. 2021. V. 35. P. 477–493. https://doi.org/10.1007/s00162-021-00569-9

  19. Kang W.L., Zhou B.B., Issakhov M., Gabdullin M. Advances in enhanced oil recovery technologies for low permeability reservoirs // Petroleum Science. 2022. V. 19. № 4. P. 1622–1640.

  20. Yakasai F., Jaafar M.Z., Bandyopadhyay S., Agi A. Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms // Journal of Industrial and Engineering Chemistry. 2021. V. 93. P. 138–162. https://doi.org/10.1016/j.jiec.2020.10.017

  21. Gbadamosi A., Patil S., Kamal M.S., Adewunmi A.A., Yusuff A.S., Agi A., Oseh J. Application of polymers for chemical enhanced oil recovery: A review // Polymers. 2022. V. 14. P. 1433. https://doi.org/10.3390/polym14071433

  22. Shchukin E.D., Zelenev A.S. Physical-Chemical Mechanics of Disperse Systems and Materials, Taylor & Francis, Boca Raton, 2016.

  23. Levine S., Bowen B.D., Partridge S.J. Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface // Colloids and Surfaces. 1989. V. 38. P. 325–343. https://doi.org/10.1016/0166-6622(89)80271-9

  24. Puel E., Coumes C.C.D., Poulesquen A., Testard F., Thill A. Pickering emulsions stabilized by inside/out Janus nanotubes: Oil triggers an evolving solid interfacial layer // Journal of Colloid and Interface Science. 2023. V. 647. P. 478–487. https://doi.org/10.1016/j.jcis.2023.04.102

  25. Boinovich L., Emelyanenko A. The prediction of wettability of curved surfaces on the basis of the isotherms of the disjoining pressure // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011. V. 383. P. 10–16. https://doi.org/10.1016/j.colsurfa.2010.12.020

  26. Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. М.: Наука, 1985.

  27. Boinovich L.B. DLVO forces in thin liquid films beyond the conventional DLVO theory // Current Opinion in Colloid & Interface Science. 2010. V. 15. P. 297–302. https://doi.org/10.1016/j.cocis.2010.05.003

  28. Kralchevsky P.A., Nagayama K. Capillary forces between colloidal particles // Langmuir. 1994. V. 10. P. 23–36. https://doi.org/10.1021/la00013a004

  29. Sarmadivaleh M., Al-Yaseri A.Z., Iglauer S. Influence of temperature and pressure on quartz–water–CO2 contact angle and CO2–water interfacial tension // Journal of Colloid and Interface Science. 2015. V. 441. P. 59–64. https://doi.org/10.1016/j.jcis.2014.11.010

  30. Arif M., Al-Yaseri A.Z., Barifcani A., Lebedev M., Iglauer S. Impact of pressure and temperature on CO2–brine–mica contact angles and CO2–brine interfacial tension: Implications for carbon geo-sequestration // Journal of Colloid and Interface Science. 2016. 462. P. 208–215. https://doi.org/10.1016/j.jcis.2018.07.115

  31. Estellé P., Cabaleiro D., Żyła G., Lugo L., Murshed S.M.S. Current trends in surface tension and wetting behavior of nanofluids // Renewable and Sustainable Energy Reviews. 2018. V. 94. P. 931–944. https://doi.org/10.1016/j.rser.2018.07.006

  32. Traciak J., Żyła G. Effect of nanoparticles saturation on the surface tension of nanofluids // Journal of Molecular Liquids. 2022. V. 363. P. 119937. https://doi.org/10.1016/j.molliq.2022.119937

  33. Traciak J., Fal J., Żyła G. 3D printed measuring device for the determination the surface tension of nanofluids // Applied Surface Science. 2021. V. 561. P. 149878. https://doi.org/10.1016/j.apsusc.2021.149878

  34. Traciak J., Sobczak J., Żyła G. The experimental study of the surface tension of titanium dioxide – ethylene glycol nanofluids // Physica E: Low-dimensional Systems and Nanostructures. 2023. V. 145. P. 115494. https://doi.org/10.1016/j.physe.2022.115494

  35. Traciak J., Sobczak J., Kuzioła R., Wasąg J., Żyła G. Surface and optical properties of ethylene glycol-based nanofluids containing silicon dioxide nanoparticles: An experimental study // Journal of Thermal Analysis and Calorimetry. 2022. V. 147. P. 7665–7673. https://doi.org/10.1007/s10973-021-11067-9

  36. Traciak J., Sobczak J., Vallejo J.P., Lugo L., Fal J., Żyła G. Experimental study on the density, surface tension and electrical properties of ZrO2–EG nanofluids // Physics and Chemistry of Liquids. 2023. V. 61. P. 14–24. https://doi.org/10.1080/00319104.2022.2027942

  37. Sobczak J., Vallejo J.P., Traciak J., Hamze S., Fal J., Estellé P., Lugo L., Żyła G. Thermophysical profile of ethylene glycol based nanofluids containing two types of carbon black nanoparticles with different specific surface areas // Journal of Molecular Liquids. 2021. V. 326. P. 115255. https://doi.org/10.1016/j.molliq.2020.115255

  38. Traciak J., Żyła G. Surface tension of ethylene glycol‑based nanofluids containing three types of oxides: zinc oxide (ZnO), magnesium oxide (MgO) and indium oxide (In2O3) // International Journal of Thermophysics. 2023. V. 44. P. 34. https://doi.org/10.1007/s10765-022-03144-4

  39. Emelyanenko A.M., Emelyanenko K.A., Vul’ A.Ya., Shvidchenko A.V., Boinovich L.B. The role of nanoparticle charge in crystallization kinetics and ice adhesion strength for dispersions of detonation nanodiamonds // Physical Chemistry Chemical Physics. 2023. V. 25. P. 3950–3958. https://doi.org/10.1039/D2CP05144C

  40. Boinovich L.B., Modin E.B., Aleshkin A.V., Emelyanenko K.A., Zulkarneev E.R., Kiseleva I.A., Vasiliev A.L., Emelyanenko A.M. Antibacterial effect of textured surfaces induced by extreme wettability and bacteriophage seeding // ACS Applied Nanomaterials. 2018. V. 1. P. 1348–1359. https://doi.org/10.1021/acsanm.8b00090

  41. Rudawska A. Assessment of surface preparation for the bonding/adhesive technology / In: Rudawska A. Surface Treatment in Bonding Technology. Academic Press, 2019. P. 227–275. https://doi.org/10.1016/b978-0-12-817010-6.00009-6

  42. Captay G. A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys // Advances in Colloid and Interface Science. 2020. V. 283. P. 102212. https://doi.org/10.1016/j.cis.2020.102212

  43. Boinovich L., Emelyanenko A. Wetting and surface forces // Advances in Colloid and Interface Science. 2011. V. 165. P. 60–69. https://doi.org/10.1016/j.cis.2011.03.002

  44. Boinovich L., Emelyanenko A. The prediction of wettability of curved surfaces on the basis of the isotherms of the disjoining pressure // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011. V. 383. P. 10–16. https://doi.org/10.1016/j.colsurfa.2010.12.020

  45. Minakov A.V., Pryazhnikov M.I., Suleymana Y.N., Meshkova V.D., Guzei D.V. Experimental study of nanoparticle size and material effect on the oil wettability characteristics of various rock types // Journal of Molecular Liquids. 2021. V. 327. P. 114906. https://doi.org/10.1016/j.molliq.2020.114906

  46. De Gennes P.G. Wetting: Statics and dynamics // Reviews of Modern Physics. 1985. V. 57. № 3. P. 827. https://doi.org/10.1103/RevModPhys.57.827

  47. Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E. Wetting and spreading // Reviews of Modern Physics. 2009. V. 81. № 2. P. 739. https://doi.org/10.1103/RevModPhys.81.739

  48. Yarin A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing… // Annual Review of Fluid Mechanics. 2006. V. 38. P. 159–192. https://doi.org/10.1146/annurev.fluid.38.050304.092144

  49. Josserand C., Thoroddsen S.T. Drop impact on a solid surface // Annual Review of Fluid Mechanics. 2016. V. 48. P. 365–391. https://doi.org/10.1146/annurev-fluid-122414-034401

  50. Johansson P., Hess B. Molecular origin of contact line friction in dynamic wetting // Physical Review Fluids. 2018. V. 3. P. 074201. https://doi.org/10.1103/PhysRevFluids.3.074201

  51. Blake T.D. The physics of moving wetting line // Journal of Colloid and Interface Science. 2006. V. 299. P. 1–13. https://doi.org/10.1016/j.jcis.2006.03.051

  52. Chen L., Bonaccurso E. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops // Physical Review E. 2014. V. 90. P. 022401. https://doi.org/10.1103/PhysRevE.90.022401

  53. Ramiasa M., Ralston J., Fetzer R., Sedev R. The influence of topography on dynamic wetting // Advances in Colloid and Interface Science. 2014. V. 206. P. 275–293. https://doi.org/10.1016/j.cis.2013.04.005

  54. Emelyanenko A.M., Boinovich L.B., Emelyanenko K.A. Spreading of biologically relevant liquids over the laser textured surfaces // Journal of Colloid and Interface Science. 2020. V. 567. P. 224–234. https://doi.org/10.1016/j.jcis.2020.02.006

  55. Kumar A., Kleinen J., Venzmer J., Trybala A., Starov V., Gambaryan-Roisman T. Spreading and imbibition of vesicle dispersion droplets on porous substrates // Colloids and Interfaces. 2019. V. 3. P. 53. https://doi.org/10.3390/colloids3030053

  56. Chao T.C., Trybala A., Starov V., Das D.B. Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. V. 451. P. 38–47. https://doi.org/10.1016/j.colsurfa.2014.03.033

  57. Antonov D.V., Islamova A.G., Strizhak P.A. Hydrophilic and hydrophobic surfaces: Features of interaction with liquid drops // Materials. 2023. V. 16. P. 5932. https://doi.org/10.3390/ma16175932

  58. Thoraval M.-J., Schubert J., Karpitschka S., Chanana M., Boyer F., Sandoval-Naval E., Dijksman J.F., Snoeijerah J.H., Lohse D. Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing // Soft Matter. 2021. V. 17. P. 5116−5121. https://doi.org/10.1039/D0SM01367F

Дополнительные материалы отсутствуют.