Коллоидный журнал, 2023, T. 85, № 6, стр. 806-817

Модели стабилизации заряженных частиц поверхностно-активными веществами в неполярных средах

П. С. Поповецкий *

Институт неорганической химии им. А.В. Николаева СО РАН
630090 Новосибирск, пр. ак. Лаврентьева, 3, Россия

* E-mail: popovetskiy@niic.nsc.ru

Поступила в редакцию 17.07.2023
После доработки 23.08.2023
Принята к публикации 23.08.2023

Аннотация

Стабилизация заряженных частиц в неполярных средах является одним из наиболее сложных вопросов современной коллоидной химии. Отнесение к коллоидной химии в данном случае абсолютно справедливо: в неполярных средах заряженные частицы, как правило, имеют супрамолекулярную природу. Низкие значения диэлектрической проницаемости среды обуславливают энергетическую невыгодность существования ионов в классическом понимании. Условием нахождения заряженных частиц в неполярных средах является их стерическая стабилизация, что требует некоторого пересмотра представлений о строении двойного электрического слоя, прежде всего его диффузной части. Важность детального анализа структуры двойного электрического слоя в неполярных средах обусловлена высокой практической значимостью электрокинетических явлений в подобных системах. В данной обзорной работе рассматриваются основные модели стерической стабилизации заряженных частиц поверхностно-активными веществами различной природы в дисперсионных средах со значением диэлектрической проницаемости ниже 5. Внимание уделено не только области концентраций, соответствующих образованию мицелл обратного типа, но и концентрациям ниже критической концентрации мицеллообразования. Кроме того, рассмотрены некоторые нетипичные примеры электрокинетических явлений в органозолях.

Ключевые слова: поверхностно-активные вещества, обратные мицеллы, двойной электрический слой, стерически стабилизированные ионы

Список литературы

  1. Mer V.K., Downes H.C. Indicator studies of acids and bases in benzene // Chem. Rev. 1933. V. 13. № 1. P. 47–60. https://doi.org/10.1021/cr60044a004

  2. Fuoss R.M. Properties of electrolytic solutions // Chemical Reviews. 1935. V. 17. № 1. P. 27–42. https://doi.org/10.1021/cr60056a002

  3. Mer V.K., Downes H.C. Acidity in non-aqueous solvents. Conductimetric and electrometric titrations of acids and bases in benzene // Journal of the American Chemical Society. 1931. V. 53. № 3. P. 888–896. https://doi.org/10.1021/ja01354a009

  4. Mer V.K., Downes H.C. Indicator studies of acids and bases in benzene // Journal of the American Chemical Society. 1933. V. 55. № 5. P. 1840–1864. https://doi.org/10.1021/ja01332a010

  5. Strong L.E., Kraus C.A. Properties of electrolytic solutions. XLV. Conductance of some salts in benzene at higher concentrations // Journal of the American Chemical Society. 1950. V. 72. № 1. P. 166–171. https://doi.org/10.1021/ja01157a047

  6. van der Minne J.L., Hermanie P.H.J. Electrophoresis measurements in benzene-correlation with stability. I. Development of method // Journal of Colloid Science. 1952. V. 7. № 6. P. 600–615. https://doi.org/10.1016/0095-8522(52)90042-1

  7. Scher H., Shlesinger M.F., Bendler J.T. Time-scale invariance in transport and relaxation // Physics Today. 1991. V. 44. № 1. P. 26–34. https://doi.org/10.1063/1.881289

  8. Beunis F., Strubbe F., Neyts K. et al. Power-law transient charge transport in a nonpolar liquid // Applied Physics Letters. 2007. V. 90. № 18. https://doi.org/10.1063/1.2734511

  9. Matsubara Y., Matsushima S., Jones T.B. Charge accumulation in an oil tank during loading operations // Journal of Electrostatics. 1997. V. 40. P. 191–197. https://doi.org/10.1016/S0304-3886(97)00036-3

  10. Perisse F., Vazquez J., Paillat T. et al. Gasoline electrification: Moisture and temperature influence // Journal of Electrostatics. 2005. V. 63. № 6–10. P. 481–487. https://doi.org/10.1016/j.elstat.2005.03.006

  11. Sun K., Liu Q., Li X. Simulation test on charge density and surface potential in an oil tank during filling operation // Journal of Electrostatics. 2009. V. 67. № 2–3. P. 340–341. https://doi.org/10.1016/j.elstat.2009.01.043

  12. Kim J., Anderson J.L., Garoff S. et al. Ionic conduction and electrode polarization in a doped nonpolar liquid // Langmuir. 2006. V. 22. № 18. P. 7942. https://doi.org/10.1021/la061883w

  13. Patel M.N., Smith P.G., Kim J. et al. Electrophoretic mobility of concentrated carbon black dispersions in a low-permittivity solvent by optical coherence tomography // Journal of Colloid and Interface Science. 2010. V. 345. № 2. P. 194–199. https://doi.org/10.1016/j.jcis.2010.01.055

  14. Thwala J.M., Goodwin J.W., Mills P.D. Electrokinetic studies of colloidal silica particles dispersed in non-aqueous media in the presence of a nonionic surfactant, dodecylhexaethylene glycol monoether (C12E6) // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009. V. 335. № 1–3. P. 33–42. https://doi.org/10.1016/j.colsurfa.2008.10.050

  15. Novotny V. Contributions of particles to electrical conductivity of colloids // Colloids and Surfaces. 1986. V. 21. P. 219–233. https://doi.org/10.1016/0166-6622(86)80093-2

  16. Espinosa C.E., Guo Q., Singh V. et al. Particle charging and charge screening in nonpolar dispersions with nonionic surfactants // Langmuir. 2010. V. 26. № 22. P. 16941–16948. https://doi.org/10.1021/la1033965

  17. Zhang Z., Wang Y., Chen Q. et al. Application of high potential electrophoretic particles modified with high ionization mono ionic liquid for electrophoretic displays // Micromachines. 2022. V. 13. № 8. P. 1235. https://doi.org/10.3390/mi13081235

  18. Gao A., Cao M., Yan J. et al. Research on electrophoretic display ink and its microencapsulation // Lecture Notes in Electrical Engineering. 2019. V. 543. P. 788–793. https://doi.org/10.1007/978-981-13-3663-8_106

  19. Morrison I.D. Electrical charges in nonaqueous media // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1993. V. 71. № 1. P. 1–37. https://doi.org/10.1016/0927-7757(93)80026-B

  20. Fertig D., Sarkadi Z., Valiskó M. et al. Scaling for rectification of bipolar nanopores as a function of a modified Dukhin number: The case of 1 : 1 electrolytes // Molecular Simulation. 2022. V. 48. № 1. P. 43–56. https://doi.org/10.1080/08927022.2021.1939330

  21. Vaitheeswaran S., Reddy G., Thirumalai D. Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores // Journal of Chemical Physics. 2009. V. 130. № 9. P. 094502. https://doi.org/10.1063/1.3080720

  22. Prieve D.C., Yezer B.A., Khair A.S. et al. Formation of charge carriers in liquids // Advances in Colloid and Interface Science. 2017. V. 244. P. 21–35. https://doi.org/10.1016/j.cis.2016.11.004

  23. Smith G.N., Eastoe J. Controlling colloid charge in nonpolar liquids with surfactants // Physical Chemistry Chemical Physics. 2013. V. 15. № 2. P. 424–439. https://doi.org/10.1039/c2cp42625k

  24. Varela L., Andraus S., Trizac E. et al. Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system // Journal of Physics Condensed Matter. 2021. V. 33. № 39. https://doi.org/10.1088/1361-648X/ac1237

  25. Eyvazi N., Biagooi M., Nedaaee Oskoee S.E. Molecular dynamics investigation of charging process in polyelectrolyte-based supercapacitors // Scientific Reports. 2022. V. 12. № 1. P. 1098. https://doi.org/10.1038/s41598-022-04837-4

  26. Dukhin A.S., Goetz P.J. How non-ionic “electrically neutral” surfactants enhance electrical conductivity and ion stability in non-polar liquids // Journal of Electroanalytical Chemistry. 2006. V. 588. № 1. P. 44–50. https://doi.org/10.1016/j.jelechem.2005.12.001

  27. Peri J.B. The state of solution of aerosol OT in nonaqueous solvents // Journal of Colloid and Interface Science. 1969. V. 29. № 1. P. 6–15. https://doi.org/10.1016/0021-9797(69)90340-3

  28. Kotlarchyk M., Chen S.H., Huang J.S. et al. Structure of three-component microemulsions in the critical region determined by small-angle neutron scattering // Physical Review A. 1984. V. 29. № 4. P. 2054–2069. https://doi.org/10.1103/PhysRevA.29.2054

  29. Kotlarchyk M., Huang J.S., Chen S.H. Structure of AOT reversed micelles determined by small-angle neutron scattering // Journal of Physical Chemistry. 1985. V. 89. № 20. P. 4382–4386. https://doi.org/10.1021/j100266a046

  30. Zhang J., Bright F.V. Nanosecond reorganization of water within the interior of reversed micelles revealed by frequency-domain fluorescence spectroscopy // Journal of Physical Chemistry. 1991. V. 95. № 20. P. 7900–7907. https://doi.org/10.1021/j100173a064

  31. Eicke H.-F., Christen H. Is water critical to the formation of micelles in apolar media?? // Helvetica Chimica Acta. 1978. V. 61. № 6. P. 2258–2263. https://doi.org/10.1002/hlca.19780610631

  32. Fowkes F.M., Lloyd T.B., Chen W.-J. et al. Zeta-potentials and heats of adsorption of charge-control agents on liquid toners // Proc. SPIE 1253. Hard Copy and Printing Materials, Media, and Processes. 1990. V. 1253. P. 52−62.https://doi.org/10.1117/12.19840

  33. Birkett K.L., Gregory P. Metal complex dyes as charge control agents // Dyes and Pigments. 1986. V. 7. № 5. P. 341–350. https://doi.org/10.1016/0143-7208(86)80002-X

  34. Strubbe F., Beunis F., Neyts K. Detection of elementary charges on colloidal particles // Physical Review Letters. 2008. V. 100. № 21. P. 218301. https://doi.org/10.1103/PhysRevLett.100.218301

  35. Hogg R., Healy T.W., Fuerstenau D.W. Mutual coagulation of colloidal dispersions // Transactions of the Faraday Society. 1966. V. 62. № 615. P. 1638–1651. https://doi.org/10.1039/tf9666201638

  36. Haoping W., Jun J., Blum L. Improvement on the Derjaguin’s method for the interaction of spherical particles // Colloid and Polymer Science. 1995. V. 273. № 4. P. 359–363. https://doi.org/10.1007/BF00652350

  37. Bowen R.W., Filippov A.N., Sharif A.O. et al. Model of the interaction between a charged particle and a pore in a charged membrane surface // Advances in Colloid and Interface Science. 1999. V. 81. № 1. P. 35–72. https://doi.org/10.1016/S0001-8686(99)00004-4

  38. Sun J., Velamakanni B.V., Gerberich W.W. et al. Aqueous latex/ceramic nanoparticle dispersions: Colloidal stability and coating properties // Journal of Colloid and Interface Science. 2004. V. 280. № 2. P. 387–399. https://doi.org/10.1016/j.jcis.2004.08.014

  39. Bulavchenko A.I., Popovetskiy P.S. Structure of adsorption layer of silver nanoparticles in sodium bis(2-ethylhexyl) sulfosuccinate solutions in n-decane as observed by photon-correlation spectroscopy and nonaqueous electrophoresis // Langmuir. 2014. V. 30. № 43. P. 12729–12735. https://doi.org/10.1021/la5004935

  40. Brown M.A., Abbas Z., Kleibert A. et al. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface // Physical Review X. 2016. V. 6. № 1. P. 011007. https://doi.org/10.1103/PhysRevX.6.011007

  41. Dukhin A.S., van de Ven T.G.M. Electrokinetic characterization of polydisperse colloidal particles // Journal of Colloid and Interface Science. 1994. V. 165. № 1. P. 9–18. https://doi.org/10.1006/jcis.1994.1200

  42. Bulavchenko A.I., Pletnev D.N. Electrophoretic concentration of nanoparticles of gold in reversed micellar solutions of AOT // Journal of Physical Chemistry C. 2008. V. 112. № 42. P. 16365–16369. https://doi.org/10.1021/jp805268w

  43. Strubbe F., Beunis F., Neyts K. Determination of the effective charge of individual colloidal particles // Journal of Colloid and Interface Science. 2006. V. 301. № 1. P. 302–309. https://doi.org/10.1016/j.jcis.2006.04.034

  44. Bulavchenko A.I., Popovetsky P.S. Electrokinetic potential of nanoparticles in reverse AOT micelles: Photometric determination and role in the processes of heterocoagulation, separation, and concentration // Langmuir. 2010. V. 26. № 2. P. 736–742. https://doi.org/10.1021/la903583r

  45. Poovarodom S., Poovarodom S., Berg J.C. Effect of alkyl functionalization on charging of colloidal silica in apolar media // Journal of Colloid and Interface Science. 2010. V. 351. № 2. P. 415–420. https://doi.org/10.1016/j.jcis.2010.07.058

  46. Poovarodom S., Berg J.C. Effect of particle and surfactant acid-base properties on charging of colloids in apolar media // Journal of Colloid and Interface Science. 2010. V. 346. № 2. P. 370–377. https://doi.org/10.1016/j.jcis.2010.03.012

  47. Tscharnuter W.W., McNeil-Watson F., Fairhurst D. A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering // ACS Symposium Series. 1998. V. 693. P. 327–340. https://doi.org/10.1021/bk-1998-0693.ch023

  48. Thomas J.C., Crosby B.J., Keir R.I. et al. Observation of field-dependent electrophoretic mobility with phase analysis light scattering (PALS) // Langmuir. 2002. V. 18. № 11. P. 4243–4247. https://doi.org/10.1021/la011758e

  49. Vinogradova O.I., Silkina E.F., Asmolov E.S. Transport of ions in hydrophobic nanotubes // Physics of Fluids. 2022. V. 34. № 12. https://doi.org/10.1063/5.0131440

  50. Sainis S.K., Merrill J.W., Dufresne E.R. Electrostatic interactions of colloidal particles at vanishing ionic strength // Langmuir. 2008. V. 24. № 23. P. 13334–13337. https://doi.org/10.1021/la8024606

  51. Park J.K., Ryu J.C., Kim W.K. et al. Effect of electric field on electrical conductivity of dielectric liquids mixed with polar additives: DC conductivity // Journal of Physical Chemistry B. 2009. V. 113. № 36. P. 12271–12276. https://doi.org/10.1021/jp9015189

  52. Hsu M.F., Dufresne E.R., Weitz D.A. Charge stabilization in nonpolar solvents // Langmuir. 2005. V. 21. № 11. P. 4881–4887. https://doi.org/10.1021/la046751m

  53. Nave S., Eastoe J., Penfold J. What is so special about aerosol-OT? 1. Aqueous systems // Langmuir. 2000. V. 16. № 23. P. 8733–8740. https://doi.org/10.1021/la000341q

  54. Nave S., Eastoe J., Heenan R.K. et al. What is so special about aerosol-OT? 2. Microemulsion systems // Langmuir. 2000. V. 16. № 23. P. 8741–8748. https://doi.org/10.1021/la000342i

  55. Nave S., Eastoe J., Heenan R.K. et al. What is so special about aerosol-OT? Part III – Glutaconate versus sulfosuccinate headgroups and oil−water interfacial tensions // Langmuir. 2002. V. 18. № 5. P. 1505–1510. https://doi.org/10.1021/la015564a

  56. Nave S., Paul A., Eastoe J. et al. What is so special about aerosol-OT? Part IV. Phenyl-tipped surfactants // Langmuir. 2005. V. 21. № 22. P. 10021–10027. https://doi.org/10.1021/la050767a

  57. Bulavchenko A.I., Podlipskaya T.Y., Demidova M.G. et al. The formation of Me(AOT)n micelles as nanoreactors, crystallizers, and charging agents: Cation-exchange solvent extraction versus direct injection solubilization // Solvent Extraction and Ion Exchange. 2020. V. 38. № 4. P. 455–471. https://doi.org/10.1080/07366299.2020.1733747

  58. Fioretto D., Freda M., Mannaioli S. et al. Infrared and dielectric study of Ca(AOT)2 reverse micelles // Journal of Physical Chemistry B. 1999. V. 103. № 14. P. 2631–2635. https://doi.org/10.1021/jp9837028

  59. Petit C., Lixon P., Pileni M.P. In situ synthesis of silver nanocluster in AOT reverse micelles // Journal of Physical Chemistry. 1993. V. 97. № 49. P. 12974–12983. https://doi.org/10.1021/j100151a054

  60. Lisiecki I., André P., Filankembo A. et al. Mesostructured fluids. 1. Cu(AOT)2−H2O−isooctane in oil rich regions // Journal of Physical Chemistry B. 1999. V. 103. № 43. P. 9168–9175. https://doi.org/10.1021/jp991242s

  61. Tanori J., Gulik-Krzywicki T., Pileni M.P. Phase diagram of copper(II) bis(2-ethylhexyl) sulfosuccinate, Cu(AOT)2–isooctane–water // Langmuir. 1997. V. 13. № 4. P. 632–638. https://doi.org/10.1021/la960427c

  62. Smith G.N., Brown P., James C. et al. The effects of counterion exchange on charge stabilization for anionic surfactants in nonpolar solvents // Journal of Colloid and Interface Science. 2016. V. 465. P. 316–322. https://doi.org/10.1016/j.jcis.2015.11.062

  63. Eastoe J., Fragneto G., Robinson B.H. et al. Variation of surfactant counterion and its effect on the structure and properties of aerosol-OT-based water-in-oil microemulsions // Journal of the Chemical Society, Faraday Transactions. 1992. V. 88. № 3. P. 461–471. https://doi.org/10.1039/FT9928800461

  64. Bulavchenko A.I., Shaparenko N.O., Kompan’kov N.B. et al. The formation of free ions and electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane-chloroform mixtures at low concentrations of AOT // Physical Chemistry Chemical Physics. 2020. V. 22. № 26. P. 14671–14681. https://doi.org/10.1039/d0cp02153a

  65. Strubbe F., Neyts K. Charge transport by inverse micelles in non-polar media // Journal of Physics Condensed Matter. 2017. V. 29. № 45. P. 453003.https://doi.org/10.1088/1361-648X/aa8bf6

  66. Park E., Lee S., Lee H. et al. Full-color electrophoretic display using charged colloidal arrays of core–shell microspheres with enhanced color tunability in non-polar medium // Advanced Optical Materials. 2021. V. 9. № 21. P. 2100833. https://doi.org/10.1002/adom.202100833

  67. Shaparenko N.O., Beketova D.I., Demidova M.G. et al. Regulation of the charge and hydrodynamic diameter of silica nanoparticles in AOT microemulsions // Colloid Journal. 2019. V. 81. № 1. P. 43–49. https://doi.org/10.1134/S1061933X19010101

  68. Lee J. Charge carriers created by interaction of a nonionic surfactant with water in a nonpolar medium // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018. V. 554. P. 211–217. https://doi.org/10.1016/j.colsurfa.2018.06.050

  69. Parent M.E., Yang J., Jeon Y. et al. Influence of surfactant structure on reverse micelle size and charge for nonpolar electrophoretic inks // Langmuir. 2011. V. 27. № 19. P. 11845–11851. https://doi.org/10.1021/la202660d

  70. Pugh R.J., Matsunaga T., Fowkes F.M. The dispersibility and stability of carbon black in media of low dielectric constant. 1. Electrostatic and steric contribution to colloidal stability // Colloids and Surfaces. 1983. V. 7. № 3. P. 183–207. https://doi.org/10.1016/0166-6622(83)80046-8

  71. Gacek M.M., Berg J.C. Effect of synergists on organic pigment particle charging in apolar media // Electrophoresis. 2014. V. 35. № 12–13. P. 1766–1772. https://doi.org/10.1002/elps.201300593

  72. Pugh R.J., Fowkes F.M. The dispersibility and stability of carbon black in media of low dielectric constant. 2. Sedimentation volume of concentrated dispersions, adsorption and surface calorimetry studies // Colloids and Surfaces. 1984. V. 9. № 1. P. 33–46. https://doi.org/10.1016/0166-6622(84)80140-7

  73. Pugh R.J., Fowkes F.M. The dispersibility and stability of coal particles in hydrocarbon media with a polyisobutene succinamide dispersing agent // Colloids and Surfaces. 1984. V. 11. № 3–4. P. 423–427. https://doi.org/10.1016/0166-6622(84)80295-4

  74. Gacek M.M., Berg J.C. Investigation of surfactant mediated acid-base charging of mineral oxide particles dispersed in apolar systems // Langmuir. 2012. V. 28. № 51. P. 17841–17845. https://doi.org/10.1021/la303943k

  75. Singh H., Ray D., Kumar S. et al. Probing the adsorption of nonionic micelles on different-sized nanoparticles by scattering techniques // Physical Review E. 2020. V. 102. № 6. P. 062601. https://doi.org/10.1103/PhysRevE.102.062601

  76. Beunis F., Strubbe F., Marescaux M. et al. Micellization and adsorption of surfactant in a nonpolar liquid in micrometer scale geometries // Applied Physics Letters. 2010. V. 97. № 18. P. 2008–2011. https://doi.org/10.1063/1.3503968

  77. Popovetskiy P.S. Synthesis and characterization of silver nanoparticles in reverse micelles of nonionic surfactants and in their mixed micelles with AOT // Colloid Journal. 2020. V. 82. № 2. P. 144–151. https://doi.org/10.1134/S1061933X2002009X

  78. Popovetskiy P.S., Kolodin A.N., Maximovskiy E.A. et al. Electrophoretic concentration and production of conductive coatings from silver nanoparticles stabilized with non-ionic surfactant Span 80 // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 625. P. 126961. https://doi.org/10.1016/j.colsurfa.2021.126961

  79. Varshosaz J., Pardakhty A., Hajhashemi V.I. et al. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery // Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents. 2003. V. 10. № 4. P. 251–262. https://doi.org/10.1080/drd_10_4_251

  80. Gacek M.M., Berg J.C. Effect of surfactant hydrophile-lipophile balance (HLB) value on mineral oxide charging in apolar media // Journal of Colloid and Interface Science. 2015. V. 449. P. 192–197. https://doi.org/10.1016/j.jcis.2014.11.075

  81. Ponto B.S., Berg J.C. Nanoparticle charging with mixed reverse micelles in apolar media // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020. V. 586. P. 124275. https://doi.org/10.1016/j.colsurfa.2019.124275

  82. Yezer B.A., Khair A.S., Sides P.J. et al. Use of electrochemical impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids // Journal of Colloid and Interface Science. 2015. V. 449. P. 2–12. https://doi.org/10.1016/j.jcis.2014.08.052

  83. Popovetskiy P., Kasyanov A., Maximovskiy E. et al. Electrophoretic mobility of silver nanoparticles stabilized with nonionic surfactant Ecosurf SA4: Origin of charged particles, concentration by electrophoresis and production of conductive coatings // Journal of Molecular Liquids. 2023. V. 374. P. 121273. https://doi.org/10.1016/j.molliq.2023.121273

Дополнительные материалы отсутствуют.