Геотектоника, 2023, № 5, стр. 3-36

Особенности формирования океанической коры сегмента Срединно-Атлантического хребта между Азорским и Исландским плюмами: результаты геологических и петрогеохимических исследований

С. Г. Сколотнев 1*, А. А. Пейве 1, С. Ю. Соколов 1, С. А. Докашенко 1, В. Н. Добролюбов 1, О. И. Окина 1, Б. В. Ермолаев 1, К. О. Добролюбова 1

1 Геологический институт РАН
119017 Москва, Пыжевский пер., д. 7, Россия

* E-mail: sg_skol@mail.ru

Поступила в редакцию 06.07.2023
После доработки 08.08.2023
Принята к публикации 22.08.2023

Аннотация

По материалам 53-го рейса НИС “Академик Николай Страхов”, организованного и проведенного Геологическим институтом РАН с 7 июля по 15 августа 2022 г. в Северной Атлантике, изучены строение океанического дна, состав базальтов и долеритов сегмента Срединно-Атлантического хребта (САХ) между разломами Максвелл и Чарли Гиббс в Северной Атлантике. Установлено, что в этом сегменте САХ вдоль оси спрединга, чередуются участки большей и меньшей магматической продуктивности, которым соответствует более высокий и более низкий рельефа дна. На участках высокого рельефа в осевой зоне формируются спрединговые ячейки, в гребневой зоне доминируют поднятия тектонического и вулканического генезиса. На участках низкого рельефа рифтовая долина состоит из глубоких рифтовых впадин, на флангах развиты невысокие гряды, разделенные широкими депрессиями. Среди изученных вулканитов выделяются океанические толеиты N-, T- и E-MORB. N-толеиты широко распространены и выплавлялись преимущественно из деплетированной мантии (источник DM). Базальты и долериты E-MORB встречаются на участках высокого рельефа. Их мантийный субстрат образован смесью материала DM и ЕМ-2 при подчиненной роли HIMU. Вулканиты Т-MORB в основном локализованы на крупных вулканических поднятиях в южной части изученного сегмента САХ и выплавлялись из субстрата, образованного смесью материала DM и HIMU при подчиненной роли ЕМ-2. В нашем исследовании мы реконструировали пассивные и активные типы мантийных неоднородностей, участвовавших в плавлении. Неоднородности пассивного типа представлены блоками преобразованной континентальной литосферы, близкими по составу к мантийному источнику ЕМ-2. Неоднородности активного типа связаны с подъемом микроплюма обогащенной мантии, по составу близкой к HIMU, вблизи разлома Максвелл и с подосевым растеканием микроплюма в северном направлении до разлома Чарли Гиббс.

Ключевые слова: океаническая кора, спрединг, рифтовая долина, поднятия дна, мантийные неоднородности, базальт, долерит, Срединно-Атлантический хребет, Северная Атлантика

Список литературы

  1. Дубинин Е.П., Галушкин Ю.И., Свешников А.А. Модель аккреции океанической коры и ее геодинамические следствия – В кн.: Жизнь Земли. ‒ Под ред. В.А. Садовничего, А.В. Смурова ‒ М.: МГУ, 2010. Вып. 32. С. 53‒83.

  2. Когарко Л.Н. Щелочной магматизм и обогащенные мантийные резервуары. Механизмы возникновения, время появления и глубины формирования // Геохимия. 2006. № 1. С. 5–13.

  3. Пейве А.А. Структурно-вещественные неоднородности, магматизм и геодинамические особенности Атлантического океана ‒ М.: Научный мир, 2002 (Тр. ГИН РАН. Вып. 548). 277 с.

  4. Пейве А.А., Соколов С.Ю., Иваненко А.Н. и др. Аккреция океанической коры в Срединно-Атлантическом хребте (48°–51.5° с.ш.) в ходе “сухого” спрединга // ДАН. Науки о Земле. 2023. Т. 508. № 2. С. 155–163.

  5. Пейве А.А., Соколов С.Ю., Разумовский А.А. и др. Соотношение магматических и тектонических процессов при формировании океанической коры к югу от разлома Чарли Гиббс (Северная Атлантика) // Геотектоника. 2023. № 1. С. 48–74.

  6. Сколотнев С.Г. Природа многообразия вулканитов экваториальной части Срединно-Атлантического хребта // Альманах Пространство и Время (электрон. науч. изд.). 2013. Т. 4. № 1. С. 6‒42. http://e-almanac.space-time.ru/assets/files/Tom

  7. Сколотнев С.Г. Регулярные и региональные вариации состава и строения океанической коры и структуры океанического дна Центральной, Экваториальной и Южной Атлантики ‒ Автореф. дис.… д. г.-м. н. ‒ М.: ГИН РАН, 2015. 59 с.

  8. Сколотнев С.Г. Разномасштабная сегментация медленноспрединговых срединно-океанических хребтов и ее возможные причины (на примере Центральной и Южной Атлантики). ‒ Мат-лы L Тектонич. совещ. “Проблемы тектоники и геодинамики земной коры” ‒ М.: ГЕОС. 2018. Т. 2. С. 189‒193.

  9. Сколотнев С.Г., Добролюбова К.О., Пейве А.А. и др. Строение спрединговых сегментов Срединно-Атлантического хребта между трансформными разломами Архангельского и Богданова (Приэкваториальная Атлантика) // Геотектоника. 2022. № 1. С. 3‒26.

  10. Сколотнев С.Г., Санфилиппо А., Пейве А.А. и др. Геолого-геофизические исследования разломной зоны Чарли Гиббс (Северная Атлантика) // ДАН. Науки о Земле. 2021. Т. 497. № 1. С. 5–9.

  11. Сущевская Н. М., Бонатти Э., Пейве А.А. и др. Гетерогенность рифтового магматизма приэкваториальной провинции Срединно-Атлантического хребта (15° с.ш.‒3° ю.ш.) // Геохимия. 2002. № 1. С. 30‒55.

  12. Сущевская Н.М., Лейченков Г.Л., Беляцкий Б.В., Жилкина А.В. Эволюция плюма Кару-Мод и его влияние на формирование мезозойских магматических провинций в Антарктиде // Геохимия. 2022. № 6. С. 503‒525.

  13. Allegre C.J., Poirier J.-P., Humler E., Hofmann A.W. The chemical composition of the Earth // Ibid. 1995. Vol. 134. P. 515‒544.

  14. Alt J.C., Anderson T.F., Bonnell L. and Muehlenbachs K. Mineralogy, chemistry, and stable isotopic compositions of hydrothermally altered sheeted dikes: ODP Hole 504B, Leg 111. // Proc. ODP, Sci. Results. 1989. Vol. 111. P. 27–40.

  15. Anderson D.L., Schramm K.A. Global hotspot maps – In: Plates, Plumes, and Paradigms. – Eds. G.R. Foulder, J.H. Natland, D.C. Prensall, D.L. Anderson – GSA. Spec. Pap. 2005. Vol. 388. P. 19–29.

  16. Benediktsdyttir B., Hey R., Martinez F. et al. A new kinematic model of the Mid-Atlantic Ridge between 55°55′ N and the Bight Transform Fault for the past 6 Ma // J. Geophys. Res.: Solid Earth. 2016. Vol. 121. № 2. P. 455‒468.

  17. Crane K. The spacing of rift axis highs: Dependence upon diapiric processes in the underlying astenosphere? // EPSL. 1985. Vol. 72. P. 405‒414.

  18. Ellam R.M. Lithospheric thickness as a control on basalt geochemistry // Geology. 1992. Vol. 20. P. 153–156.

  19. Escartin J., Smith D.K., Cann J., and et al. Central role of detachment faults in accretion of slow-spread oceanic lithosphere // Nature. 2008. Vol. 455. P. 790‒794.

  20. Fontignie D., Schilling J.G. Mantle heterogeneities beneath the South Atlantic: A Nd–Sr‒Pb isotope study along the Mid-Atlantic Ridge (3° S‒46 °S) // EPSL. 1996. Vol. 142. P. 109‒121.

  21. GEBCO 30″ Bathymetry Grid. Vers. 20141103. 2014. http://www.gebco.net (Accessed June, 2023).

  22. GEOROC Database (Geochemistry of Rocks of the Oceans and Continents). Vers. 2023-06-01. 2023. https://georoc.eu/georoc/ (Accessed June, 2023).

  23. Grindlay N.R., Fox P.J., Vogt P.R. Morphology and tectonics of the Mid-Atlantic Ridge (25° S–27°30′ S) from sea beam and magnetic data // J. Geophys. Res. 1992. Vol. 97. № B5. P.6983‒7010.

  24. Hanan B.B., Kingsley R.H., Schilling J.G. Pb isotope evidence in the South Atlantic for migrating ridge interactions // Nature. 1986. Vol. 322. P. 137‒144.

  25. Hart S.R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies // EPSL. 1988. Vol. 90. № 3. P. 273‒296.

  26. Hey R., Martinez F., Höskuldsson A., and et al. Multibeam investigation of the active North Atlantic plate boundary reorganization tip // EPSL. 2016. Vol. 435. P. 115–123.

  27. Hoffman A.W. Chemical differentiation of the Earth: The relationships between mantle, continental crust, and oceanic crust // EPSL. 1991. Vol. 90. P. 297‒314.

  28. Hofman A.F. Mantle geochemistry: message from oceanic volcanism // Nature. 1997. Vol. 385. P. 219‒229.

  29. Humphreys E.R., Niu Y. On the composition of ocean island basalts (OIB): the effect of lithospheric thickness variation and mantle metasomatism // Lithos. 2009. Vol. 112. P. 118‒136.

  30. Jackson M.G., Hart S.R., Koppers A.A., and et al. The return of subducted continental crust in Samoan lavas // Nature. 2007. Vol. 448. P. 684‒687.

  31. Jaques A.L., Green D.H. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiite basalts // Contrib. Mineral. Petrol. 1980. Vol. 73. № 3. P. 287‒310.

  32. Klein E.M., Langmuir Ch. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness // J. Geophys. Res. 1987. Vol. 92. № B8. P. 8089‒8115.

  33. Langmuir Ch.H., Bender J.F. The geochemistry of oceanic basalts in the vicinity of transform faults: observations and implications // EPSL. 1984. Vol. 69. P. 107–127.

  34. Langmuir Ch.H., Bender J.F., Bence A.E. et al. Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge // EPSL. 1977. Vol. 36. P. 133–156.

  35. Lin J., Purdy G.M., Schouten H. et al. C. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge // Nature. 1990. Vol. 344. P. 627–632.

  36. Lorinczi P., Houseman G.A. Lithospheric gravitational instability beneath the Southeast Carpathians // Tectonophysics. 2009. Vol. 474. P. 322‒336.

  37. Macdonald K.C., Fox P.J., Vogt P.R. A new view of the mid-ocean ridge from the behavior of ridge axis discontinuities // Nature. 1988. Vol. 335. P. 217–225.

  38. Martinez F., Hey R., Hoskuldsson A. Reykjanes Ridge evolution: Effects of plate kinematics, small-scale upper mantle convection and a regional mantle gradient // Earth-Sci. Rev. 2020. Vol. 206. P. 1‒24.

  39. Merkouriev S., DeMets C. A high-resolution model for Eurasia-North America plate kinematics since 20 Ma // Geophys. J. Int. 2008. Vol. 173. P. 1064–1083.

  40. Montelli R., Notel G., Dahlen F.A. et al. Catalogue of deep mantle plumes: New results from finite-frequency tomography // Geochem. Geophys. Geosyst. 2006. Vol. 7. № 11. P. 1‒69.

  41. Niu Y., O’Hara M.J. MORB-mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: new perspective on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle // Lithos. 2009. Vol. 112. P. 1‒17.

  42. Okina O., Lyapunov S., Avdosyeva M. et al. An investigation of the reliability of HF acid mixtures in the bomb digestion of silicate rocks for the determination of trace elements by ICP-MS // Geostandards and Geoanalyt. Res. 2016. Vol. 40. P. 583–597.

  43. Okina O.I., Lyapunov S.M., Dubensky A.S. Influence of sample treatment after bomb digestion on determination of trace elements in rock samples by ICP-MS // Microchem. J. 2018. Vol. 140. P. 123–128.

  44. Phillips M.G., Parmentier E.M., Lin J. Mechanisms for the origin of mid-ocean ridge axial topography: Implications for the thermal and mechanical structure of accreiting plate boundaries // J. Geophys. Res. 1987. Vol. 92. No. P. 12 823‒12 836.

  45. Regelous M., Niu Ya., Abouchami W. et al. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26° S // Lithos. 2009. Vol. 112. P. 57–72.

  46. Schilling J. Geochemical and isotopic variation along the Mid-Atlantic Ridge axis from 79° N to 0° N – In: The Geology of North America: The Western Atlantic Region. – Eds. P.R. Vogt, B.E. Tucholke, (GSA Mem., Boulder, USA. 1986). P. 137‒153.

  47. Schilling J., Hanan B., McCulli B. and et al. Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: A Nd–Sr–Pb isotopic study // J. Geophys. Res. 1994. Vol. 99. № B6. P. 12 005–12 028.

  48. Schilling J.G., Thompson G., Kingsley R., and et al. Hotspot-migrating ridge interaction in the South Atlantic // Nature. 1985. Vol. 313. P. 187‒191.

  49. Schilling J.G., Zajac M., Evants R., and et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29° N to 73° N // Am. J. Sci. 1983. Vol. 283. P. 510–586.

  50. Skolotnev S.G., Sanfilippo A., Peyve A.A., and et al. Seafloor spreading and tectonics at the Charlie Gibbs transform system (52°‒53° N, Mid-Atlantic Ridge): Preliminary results from R/V “Akademik Nikolaj Strakhov” expedition S50 // Ofioliti. 2021. Vol. 46. № 1. P. 83‒101.

  51. Sleep N.H. Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes? // J. Geophys. Res. 1984. Vol. 89. № B12. P. 10 029‒ 10 041.

  52. Sobolev A.V., Hofmann A.W., Kuzmin D.V. et al. The amount of recycled mantle-derived melts // Science. 2007. Vol. 316. P. 412‒417.

  53. Sun S.S., McDonough W.F. Chemical and isotopic systematics in ocean basalt: Imlication for mantle composition and processes – In: Magmatism in the Ocean Basins – Eds. A.D. Saunders, M.J. Norry, (Geol. Soc. Spec. Publ. USA. 1989. Vol .42), P. 313‒345.

  54. Sun S.S., Nesbit R.W., Sharaskin A.Ya. Geochemical characteristics of mid-ocean ridge basalts // EPSL. 1979. Vol. 96. P. 119‒133.

  55. Thompson R.N. Phase-equilibria constraints on the genesis and magmatic evolution of oceanic basalts // Earth-Sci. Rev. 1987. Vol. 24. P. 161‒210.

  56. Weaver B.L., Wood D.A., Tarney J. et al. Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha // Geol. Soc. Spec. Publ. 1987. № 30. P. 253‒267.

  57. White W.M. Ocean island basalts and mantle plumes: The geochemical perspective // Ann. Rev. Earth Planet. Sci. 2010. Vol. 38. P. 133‒160.

  58. White W., Schilling J.G. The nature and origin of geochemical variation in the Mid-Atlantic Ridge basalts from the central North Atlantic // Geochim. Cosmochim. Acta. 1978. Vol. 42. P. 1501‒1516.

  59. Whitmarsh R.B., Ginzburg A., Searle R.C. The structure and origin of the Azores-Biscay Rise, North-east Atlantic Ocean // J. Geophys. Res. 1982. Vol. 70. P. 79–107.

  60. Yu D., Fontignie D., Schilling J.G. Mantle-plume interactions in the Central North Atlantic: Nd-isotope study of Mid-Atlantic Ridge basalts from 30° N to 50° N // EPSL. 1997. Vol. 146. P. 259‒272.

  61. Zindler A., Jagoutz E., Goldstein S. Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective // Nature. 1982. Vol. 298. P. 519‒523.

Дополнительные материалы

скачать ESM_1.docx
Приложение 1.
Table S1. Bulk rock chemistry of basalts and dolerites (%), and the concentration of some trace elements in them (ppm)
 
скачать ESM_2.docx
Приложение 2.
Table S2. Concentrations trace elements (ppm) in the basalts and dolerites