Журнал аналитической химии, 2023, T. 78, № 12, стр. 1064-1095

Комплексообразование гуминовых кислот с микроэлементами: методы и подходы

И. В. Волков a*, Е. В. Поляков a

a Институт химии твердого тела Уральского отделения Российской академии наук
620108 Екатеринбург, ул. Первомайская, 91, Россия

* E-mail: ilyavolkov@ihim.uran.ru

Поступила в редакцию 27.03.2023
После доработки 01.06.2023
Принята к публикации 01.06.2023

Аннотация

В обзоре проанализированы исследования последних 20−25 лет в области физикохимии комплексообразования гуминовых кислот с катионами, включая их радионуклиды, в водных растворах. Выявлены проблемы описания реакционной способности гуматных комплексов с учетом объективной сложности химической природы гуминовых кислот как одного из основных классов природного органического вещества. Рассмотрены основные методы моделирования комплексообразования с гуминовыми кислотами, экспериментальные методы разделения комплексов гуматов и несвязанного катиона (ультрафильтрация, диализ и др.), прямые инструментальные методы обнаружения комплексов (электрохимические, спектроскопические). Также уделено внимание практическому аспекту использования гуминовых кислот для очистки природных и сточных вод от загрязняющих веществ – тяжелых металлов и радионуклидов. Проанализированы литературные данные о сорбционной способности гуминовых кислот различного происхождения по отношению к катионам тяжелых металлов, а также количественные данные, характеризующие устойчивость гуматных комплексов.

Ключевые слова: гуминовые кислоты, комплексообразование, микроэлементы, радионуклиды, методы.

Список литературы

  1. Орлов Д.С., Садовникова Л.К., Суханова Н.И. Химия почв. М.: Высшая школа, 2005. 558 с.

  2. Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ, 1990. 325 с.

  3. Stevenson F.J. Humus Chemistry: Genesis, Composition, Reactions. 2nd Ed. New York: Wiley, 1994. P. 512.

  4. Перминова И.В. Анализ, классификация и прогноз свойств гумусовых кислот. Дис. … докт. хим. наук. М.: МГУ, 2000.

  5. Химическая энциклопедия. Т. 1 / Под ред Кнунянца И.Л. М.: Советская энциклопедия, 1988. 623 с.

  6. Kleinhempel D. Einbeitragzurtheorie des Huminstoffzusstandes // Albrecht Thaer Archiv. 1970. V. 14. P. 3.

  7. Buffle J. Complexation Reactions in Aquatic Systems: An Analytical Approach. Chichester: Ellis Horwood, 1988.

  8. de Melo G.B.A., Motta F.L., Santana M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments // Mater. Sci. Eng. C. 2016. V. 62. P. 967.

  9. Добровольский В.В. Роль органического вещества почв в миграции тяжелых металлов // Природа. 2004. № 7. С. 35.

  10. Варшал Г.М., Кощеева И.Я., Сироткина И.С., Велюханова Т.К., Инцикирвели Л.Н., Замокина Н.С. Изучение органических веществ поверхностных вод и их взаимодействия с ионами металлов // Геохимия. 1979. № 4. С. 598.

  11. Добровольский В.В. Гуминовые кислоты и водная миграция тяжелых металлов // Почвоведение. 2006. № 11. С. 1315–1321. (Dobrovolskii V.V. Humic acids and water migration of heavy metals // Eurasian Soil Sci. 2006. V. 39. P. 1183.)

  12. Василевич Р.С., Безносиков В.А., Лодыгин Е.Д., Кондратенок Б.М. Комплексообразование ионов ртути (II) с гуминовыми кислотами тундровых почв // Почвоведение. 2014. № 3. С. 283. (Vasilevich R.S., Beznosikov V.A., Lodygin E.D., Kondratenok B.M. Complexation of mercury(II) ions with humic acids in tundra soils // Eurasian Soil Sci. 2014. V.47. P. 162.)

  13. Ладонин Д.В., Марголина С.Е. Взаимодействие гуминовых кислот с тяжелыми металлами // Почвоведение. 1997. № 7. С. 806.

  14. Feng X., Simpson A.J., Simpson M.J. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces // Org. Geochem. 2000. V. 36. P. 1553.

  15. El-sayed M.E.A., Khalaf M.M.R., Gibson D., Rice J.A. Assessment of clay mineral selectivity for adsorption of aliphatic/aromatic humic acid fraction // Chem. Geol. 2019. V. 511. P. 21.

  16. Тихонов В.В., Орлов Д.С., Лисовицкая О.В., Завгородняя Ю.А., Бызов Б.А., Демин В.В. Сорбция гуминовых кислот бактериями // Микробиология. 2013. Т. 82. № 6. С. 691. (Tikhonov V.V., Orlov D.S., Zavgorodnyaya Y.A., Byzov B.A., Demin V.V., Lisovitskaya O.V. Sorption of humic acids by bacteria // Microbiology. 2013. V. 82. P. 707.)

  17. Millour M., Gagne J.P. Sorption between humic substances and marine microalgae in estuaries: Effects of microalgae species, pH and salinity / 16th Meeting of International Humic Substances Society (IHSS). Hangzhou, 2012. P. 823.

  18. Мальцева Е.В., Юдина Н.В. Сорбция гуминовых кислот кварцевыми песками // Химия твердого топлива. 2014. № 4. С. 27. (Maltseva E.V., Yudina N.V. Sorption of humic acids by quartz sands // Solid Fuel Chem. 2014. V. 48. P. 239.)

  19. Bryan N.D., Abrahamsen L., Evans N., Warwick P., Buckau G., Weng L., Van Riemsdijk W.H. The effects of humic substances on the transport of radionuclides: Recent improvements in the prediction of behaviour and the understanding of mechanisms // Appl. Geochem. 2012. V. 27. P. 378.

  20. Boggs S. Jr., Livermore D., Seitz M.G. Humic Substances in Natural Waters and Their Complexation with Trace Metals and Radionuclides: A review. ANL-84-78. Argonne, IL: Argonne National Laboratory, 1985. P. 110.

  21. Lenhart J.J., Yang Y. The effect of humic and fulvic acids on arsenic solubility in drinking water supplies: Interim report for 2003OH5B: Arsenic binding by natural organic matter. 2004.

  22. Gonzalez-Raymat H., Anagnostopoulos V., Denham M., Cai Y., Katsenovich Y.P. Unrefined humic substances as a potential low-cost amendment for the management of acidic groundwater contamination // J. Environ. Manage. 2018. V. 212. P. 210.

  23. Cáceres-Vélez P.R., Fascineli M.L., Sousa M.H., Grisolia C.K., Yate L., Narcizo de Souza P.E., Estrela-Lopise I., Moya S., Azevedo R.B. Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag3+ coating // J. Hazard. Mater. 2018. V. 353. P. 173.

  24. Klučáková M., Kalina M., Smilek J., Laštůvková M. The transport of metal ions in hydrogels containing humic acids as active complexation agent // Colloids Surf. A: Physicochem. Eng. Asp. 2018. V. 557. P. 116.

  25. Verbeeck M., Warrinnier R., Gustafsson J.P., Thiry Y., Smolders E. Soil organic matter increases antimonate mobility in soil: An Sb(OH)6 sorption and modelling study // Appl. Geochem. 2019. V. 104. P. 33.

  26. Wang L.F., Wang L.L., Ye X.D., Li W.W., Ren X.M., Sheng G.P., Yu H.Q., Wang X.K. Coagulation kinetics of humic aggregates in mono- and di-valent electrolyte solutions // Environ. Sci. Technol. 2013. V. 47. P. 5042.

  27. Kelleher B., Simpson A. Humic substances in soils: Are they really chemically distinct? // Environ. Sci. Technol. 2006. V. 40. P. 4605.

  28. Sutton R., Sposito G. Molecular structure in soil humic substances: The new view // Environ. Sci. Technol. 2005. V. 39. P. 9009.

  29. Федотов Г.Н., Шоба С.А. О природе гумусовых веществ // Почвоведение. 2015. № 12. С. 1424–1432. (Fedotov G.N., Shoba S.A. On the nature of humic substances // Eurasian Soil Sci. 2015. V. 48. P. 1292.)

  30. Ai Yu., Zhao Ch., Sun L., Wang X., Liang L. Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: A molecular dynamics simulation // Sci. Total Environ. 2020. V. 702. Article 135072.

  31. Scatchard G. The attractions of proteins for small molecules and ions // Ann. N.Y. Acad. Sci.1949. V. 51. P. 660.

  32. Kim K.R., Czerwinski J.I. Complexation of metal ions with humic acid: metal ion charge neutralization model // Radiochim. Acta. 1996. V. 73. P. 5.

  33. Kinniburgh D.G., Milne C.J., Benedetti M.F., Pinheiro J.P., Filius J., Koopal L., van Riemsdijk W.H. Metal ion binding by humic acid:  Application of the NICA-Donnan model // Environ. Sci. Technol. 1996. V. 30. № 5. P. 1687.

  34. Tipping E. Cation Binding by Humic Substances. Cambridge: Cambridge University Press, 2002.

  35. Tochiyama O., Niibori Y., Tanaka K., Kubota T., Yoshino H., Kirishima A., Setiawan B. Modeling of the complex formation of metal ions with humic acids // Radiochim. Acta. 2004. V. 92. P. 559.

  36. Stamberg K., Benes P., Mizera J., Dolanský J., Vopálka D., Chalupská K. Modeling of metal–humate complexation based on the mean molecular weight and charge of humic substances: Application to Eu(III) humate complexes using ion exchange // J. Radioanal. Nucl. Chem. 2003. V. 258. № 2. P. 329.

  37. Tanford C. Physical Chemistry of Macromolecules. New York: Wiley, 1961.

  38. Tipping E. Humic ion-binding Model VI: An improved description of ion-binding by humic substances // Aquat. Geochem. 1998. V. 4. P. 3.

  39. Tipping E., Lofts S., Sonke J.E. Humic Ion-Binding Model VII: A revised parameterisation of cation-binding by humic substances // Environ. Chem. 2011. V. 8. P. 225.

  40. Glaus M.A., Hummel W., Van Loon L.R. Trace metal-humate interactions. I. Experimental determination of conditional stability constants // Appl. Geochem. 2000. V. 15. P. 953.

  41. Sonke J.E. Lanthanide−humic substances complexation. II. Calibration of humic ion-binding Model V // Environ. Sci. Technol. 2006. V. 40. P. 7481.

  42. Koopal L.K., van Riemsdijk, W.H., de Wit J.C.M., Benedetti M.F. Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces // J. Coll. Int. Sci. 1994. V. 166. P. 51.

  43. Kinniburgh D.G., van Riemsdijk W.H., Koopal L.K., Borkovec M., Benedetti M.F., Avena M.J. Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency // Colloids Surf. A: Physicochem. Eng. Asp. 1999. V. 151. P. 147.

  44. Dzomback D.A., Morel M.M. Surface Complexation Modelling: Hydrous Ferric Oxide. New-York: John Wiley & Sons, 1990.

  45. Schubert J. The use of ion exchangers of the determination of physical-chemical properties of substances, particularly radiotracers, in solution. I. Theoretical // J. Phys. Coll. Chem. 1948. V. 52. № 2. P. 340.

  46. Goli E., Hiemstra T., Rahnemaie R. Interaction of boron with humic acid and natural organic matter: Experiments and modeling // Chem. Geol. 2019. V. 515. P. 1.

  47. Ruiz-Garcia M., Villalobos M., Antelo J., Martinez-Villegas N. Tl(I) adsorption behavior on K-illite and on humic acids // Appl. Geochem. 2022. V. 138. Article 105220.

  48. Shi Z., Allen H.E., Di Toro D.M., Lee S.-Z., Flores Meza D.M., Lofts S. Predicting cadmium adsorption on soils using WHAM VI // Chemosphere. 2007. V. 69. P. 605.

  49. Wang P., Ding Y., Liu M., Liang Y., Shi Z. Modeling kinetics of Ni dissociation from humic substances based on WHAM 7 // Chemosphere. 2019. V. 221. P. 254.

  50. Stern J.C., Foustoukos D.I., Sonke J.E., Salters V.J.M. Humic acid complexation of Th, Hf and Zr in ligand competition experiments: Metal loading and pH effects // Chem. Geol. 2014. V. 363. P. 241.

  51. Nifant’eva T.I., Burba P., Fedorova O., Shkinev V.M., Spivakov B.Y. Ultrafiltration and determination of Zn– and Cu–humic substances complexes stability constants // Talanta. 2001. V. 53. № 6. P. 1127.

  52. Burba P., Aster B., Nifant’eva T., Shkinev V., Spivakov B.Ya. Membrane filtration studies of aquatic humic substances and their metal species: A concise overview. Part 1. Analytical fractionation by means of sequential-stage ultrafiltration // Talanta. 1998. V. 45. № 5. P. 977.

  53. Sakuragi T., Sawa S., Sato S., Kozaki T., Mitsugashira T., Hara M., Suzuki Y. Complexation of americium(III) with humic acid by cation exchange and solvent extraction // J. Radioanal. Nucl. Chem. 2004. V. 261. № 2. P. 309.

  54. Волков И.В., Поляков Е.В., Денисов Е.И., Иошин А.А. Сорбционное поведение ионов стронция в растворах гуминовой кислоты // Радиохимия. 2017. V. 59. № 1. С. 63–70. (Volkov I.V., Polyakov E.V., Denisov E.I., Ioshin A.A. Sorption behavior of strontium ions in humic acid solutions // Radiochemistry. 2017. V. 59. P. 70.)

  55. Kautenburger R., Heina C., Sander J.M., Beck H.P. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS // Anal. Chim. Acta. 2014. V. 816. P. 50.

  56. Liu G., Cai Y. Studying arsenite–humic acid complexation using size exclusion chromatography-inductively coupled plasma mass spectrometry // J. Hazard. Mater. 2013. V. 262. P. 1223.

  57. Radaelli M., Scalabrin E., Toscano G., Capodaglio G. High performance size exclusion chromatography-inductively coupled plasma-mass spectrometry to study the copper and cadmium complexation with humic acids // Molecules. 2019. V. 24. № 17. P. 3201.

  58. Fakour H., Lin T.-F. Experimental determination and modeling of arsenic complexation with humic and fulvic acids // J. Hazard. Mater. 2014. V. 279. P. 569.

  59. Terbouche A., Djebbar S., Benali-Baitich O., Hauchard D. Complexation study of humic acids extracted from forest and sahara soils with zinc (II) and cadmium (II) by differential pulse anodic stripping voltammetry (DPASV) and conductimetric methods // Water Air Soil Pollut. 2011. V. 216. P. 679.

  60. Louis Y., Pernet-Coudrier B., Varrault G. Implications of effluent organic matter and its hydrophilic fraction on zinc(II) complexation in rivers under strong urban pressure: Aromaticity as an inaccurate indicator of DOM–metal binding // Sci. Total Environ. 2014. V. 490. P. 830.

  61. Henrique do Nascimento F., Masini J.C. Complexation of Hg(II) by humic acid studied by square wave stripping voltammetry at screen-printed gold electrodes // Talanta. 2012. V. 100. P. 57.

  62. Лаврик Н.Л., Муллоев Н.У. Влияние кислотно-щелочного равновесия на спектры поглощения гуминовой кислоты в присутствии ионов меди // Журн. прикл. спектроскопии. 2014. Т. 81. № 1. С. 159. (Lavrik N.L., Mulloev N.U. Effect of acid–base equilibrium on absorption spectra of humic acid in the presence of copper ions // J. Appl. Spectrosс. 2014. V. 81. P. 158.)

  63. Richard C., Coelho C., Guyot G., Shaloiko L., Trubetskoj O., Trubetskaya O. Fluorescence properties of the <5 kDa molecular size fractions of a soil humic acid // Geoderma. 2011. V. 163. № 1–2. P. 24.

  64. Gu Y.L., Yin M.X., Zhang H.M., Wang U.Q., Shi J. C. Study on the binding interaction of chromium(VI) with humic acid using UV–Vis, fluorescence spectroscopy and molecular modeling // Spectrochim. Acta A. 2015. V. 136. P. 1702.

  65. Хунджуа Д.А., Южаков В.И., Корватовский Б.Н., Пащенко В.З., Кулябко Л.С., Кыдралиева Л.А., Пацаева С.В. Спектроскопическое проявление взаимодействия гуминовых кислот с ионами трехвалентного железа в водном растворе // Вестник МГУ. Сер. 3. Физ. Астрон. 2018. № 6. С. 55–60. (Khundzhua D.A., Yuzhakov V.I., Patsaeva S.V., Korvatovskiy B.N., Paschenko V.Z., Kulyabko L.S., Kydralieva K.A. Spectroscopic manifestation of interaction of humic acids with ferric ions in aqueous solutions // Moscow Univ. Phys. Bull. 2018. V. 73. P. 632.)

  66. Ryan D.K., Weber J.H. Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid // Anal. Chem. 1982. V. 54. № 6. P. 986–990.

  67. Hernández D., Plaza C., Senesi N., Polo A. Detection of copper(II) and zinc(II) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy // Environ. Pollut. 2006. V. 143. № 2. P. 212.

  68. Wu J., Zhang H., He P.J., Shao L.M. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis // Water Res. 2011. V. 45. № 4. P. 1711.

  69. Wu J., Zhang H., Shao L.M., He P.J. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate // Environ. Pollut. 2012. V. 162. P. 63.

  70. Bai H., Jiang Zh., He M., Biying Ye B., Wei Sh. Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study // J. Inviron. Sci. 2018. V. 70. P. 154.

  71. Nakashima K., Xing S., Gong Y., Miyajima T. Characterization of humic acids by two-dimensional correlation fluorescence spectroscopy // J. Mol. Struct. 2008. V. 883–884. P. 155.

  72. He X.S., Xi B.D., Li X., Pan H.W., An D., Bai S.G., Li D., Cui D.Y. Fluorescence excitation–emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification // Chemosphere. 2013. V. 93. № 9. P. 2208.

  73. Boguta P., D’Orazio V., Senesi N., Sokołowska Z., Szewczuk-Karpisz K. Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids // J. Environ. Manag. 2019. V. 245. P. 367.

  74. Stern O., Volmer M. Über die Abklingungszeit der Fluoreszenz // Z. Phys. 1919. Bd. 20. S. 183.

  75. Hays M.D., Ryan D.K., Pennell S. Modified multisite Stern−Volmer equation for the determination of conditional stability constants and ligand concentrations of soil fulvic acid with metal ions // Anal. Chem. 2004. V. 76. P. 848.

  76. Pompe S., Schmeide K., Bubner M., Geipel G., Heise K.H., Bernhard G., Nitsche H. Investigation of humic acid complexation behavior with uranyl ions using modified synthetic and natural humic acids // Radiochim. Acta. 2000. V. 88. P. 553.

  77. Nouhi A., Hajjoul H., Redon R., Gagne J.P., Mounier S. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties // Spectrochim. Acta A. 2018. V. 193. P. 219.

  78. Sachs S., Brendler V., Geipel G. Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy // Radiochim. Acta. 2007. V. 95. P. 103.

  79. Jain A., Yadav K., Mohapatra M., Godbole S.V., Tomar B.S. Spectroscopic investigation on europium complexation with humic acid and its model compounds // Spectrochim. Acta A. 2009. V. 72. P. 1122.

  80. Lukman S., Saito T., Aoyagi N., Kimura T., Nagasaki S. Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC) // Geochim. Cosmochim. Acta. 2012. V. 88. P. 199.

  81. Saito T., Aoyagi N., Terashima M. Europium binding to humic substances extracted from deep underground sedimentary groundwater studied by time-resolved laser fluorescence spectroscopy // J. Nucl. Sci. Technol. 2017. V. 54. № 4. P. 444.

  82. Бамбалов Н.Н. Осаждение гуминовых веществ из водных и щелочных растворов под воздействием электролитов (обзор) // Химия твердого топлива. 2016. Т. 1. № 1. С. 53. (Bambalov N.N. Precipitation of humic substances from aqueous and alkaline solutions under the action of electrolytes: A review // Solid Fuel Chem. 2016. V. 50. P. 51.)

  83. Дину М.И., Шкинев В.М. Комплексообразование ионов металлов с органическими веществами гумусовой природы: методы исследования и структурные особенности лигандов, распределение элементов по формам // Геохимия. 2020. Т. 65. № 2. С. 165–177. (Dinu M.I., Shkinev V.M. Complexation of metal ions with organic substances of humus nature: Methods of study and structural features of ligands, and distribution of elements between species // Geochem Int. 2020. V. 58. № 2. P. 200–211.)

  84. Kimuro Sh., Kirishima A., Kitatsuji Y., Miyakawa K. Thermodynamic study of the complexation of humic acid by calorimetry // J. Chem. Thermodynamics. 2019. V. 132. P. 352.

  85. Cao Yi, Conklin M., Betterton E. Competitive complexation of trace metals with dissolved humic acid // Environ. Health Perspect. 1995. V. 103 (Suppl. 1). P. 29.

  86. Pandey A.K., Pandey S.D., Misra V. Stability constants of metal–humic acid complexes and its role in environmental detoxification // Ecotoxicol. Environ. Saf. 2000. V. 47. № 2. P. 195.

  87. Dudare D., Klavins M. Complex-forming properties of peat humic acids from a raised bog profiles // J. Geochem. Explor. 2013. V. 129. P. 18.

  88. Garcia-Mina J.M. Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost // Org. Geochem. 2006. V. 37. P. 1960.

  89. Tipping E., Rey-Castro C., Bryan S.E., Hamilton-Taylor J. Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation // Geochim. Cosmochim. Acta. 2002. V. 66. № 18. P. 3211.

  90. Marsac R., Banik N.L., Lützenkirchen J., Catrouillet C., Marquardt C.M., Johannesson K.H. Modeling metal ion-humic substances complexation in highly saline conditions // Appl. Geochem. 2017. V. 79. P. 52.

  91. Fang K., Yuan D., Zhang L., Feng L., Chen Y., Wang Y. Effect of environmental factors on the complexation of iron and humic acid // J. Environ. Sci. 2015. V. 27. P. 188.

  92. Catrouillet C., Davranche M., Dia A., Bouhnik-Le Coz M., Marsac R., Pourret O., Gruau G. Geochemical modeling of Fe(II) binding to humic and fulvic acids // Chem. Geol. 2014. V. 372. P. 109.

  93. Xiaoli Ch., Guixiang L., Xin Zh., Yongxia H., Youcai Zh. Complexion between mercury and humic substances from different landfill stabilization processes and its implication for the environment // J. Hazard. Mater. 2012. V. 209–210. P. 59.

  94. Zhou P., Yan H., Gu B. Competitive complexation of metal ions with humic substances // Chemosphere. 2005. V. 58. P. 1327.

  95. Choppin G.R., Shanbhag P.M. Binding of calcium by humic acid // J. Inorg. Nucl. Chem. 1981. V. 43. № 5. P. 921.

  96. Laszak I., Choppin G.R. Interaction study between Ca2+ and humic acids in brine media // Radiochim. Acta. 2001. V. 89. P. 653.

  97. Kirishima A., Tanaka K., Niibori Y., Tochiyama O. Complex formation of calcium with humic acid and polyacrylic acid // Radiochim. Acta. 2002. V. 90. P. 555.

  98. Paulenová A., Rajec P., Zemberyová M., Sasköiová G., Visacký V. Strontium and calcium complexation by humic acid // J. Radioanal. Nucl. Chem. 2000. V. 246. № 3. P. 623.

  99. Paulenová A., Rajec P., Kandrác J., Sasköiová G., Tóthová E., Bartos P. Svec V., Góra R. The study of americium, yttrium and lead complexation by humic acids of different origin // J. Radioanal. Nucl. Chem. 2000. V. 246. № 3. P. 617.

  100. Линник П.Н., Жежеря В.А., Линник Р.П. О некоторых особенностях комплексообразования Al(III) с гуминовыми веществами // Методы и объекты химического анализа. 2009. Т. 4. № 1. С. 73.

  101. González Guadarrama M.J., Armienta Hernández M.A., Rosa A.H. Aquatic humic substances: Relationship between origin and complexing capacity // Bull. Environ. Contam. Toxicol. 2018. V. 100. P. 627.

  102. Swift R.S. Sequestration of carbon by soil // Soil Sci. 2001. V. 166. P. 858.

  103. Lenhart J.J., Cabaniss S.E., MacCarthy P., Honeyman B.D. Uranium(VI) complexation with citric, humic and fulvic acids // Radiochim. Acta. 2000. V. 88. P. 345.

  104. Sakuragi T., Sawa S., Sato S., Kozaki T., Hara M., Suzuki Y. Interaction of americium(III) with humic acid over wide pH region // J. Radioanal. Nucl. Chem. 2005. V. 265. P. 349.

  105. Nagao S., Fujitake N., Kodama H. Matsunanga T. Association of Am with humic substances isolated from river waters with different water quality // J. Radioanal. Nucl. Chem. 2003. V. 255. P. 459.

  106. Nagao S., Aoyama M., Watanabe A., Tanaka T. Complexation of Am with size-fractionated soil humic acids // Colloids Surf. A. 2009. V. 347. P. 239.

  107. Choppin G.R. Actinide speciation in aquatic systems // Mar. Chem. 2006. V. 99. P. 83.

  108. Reiller P., Moulin V., Casanova F., Dautel C. On the study of Th(IV)-humic acid interactions by competition sorption studies with silica and determination of global interaction constants // Radiochim. Acta. 2003. V. 91. P. 513.

  109. Neck V., Kim J.I. Solubility and hydrolysis of tetravalent actinides // Radiochim. Acta. 2001. V. 89. P. 1.

  110. Banik N.L., Buda R.A., Burger S., Kratz J.V., Trautmann N. Speciation and interactions of plutonium with humic substances and kaolinite in aquifer systems // J. Alloys Compd. 2007. V. 444–445. P. 522.

  111. Marsac R., Banik N.L., Marquardt C.M., Kratz J.V. Stabilization of polynuclear plutonium(IV) species by humic acid // Geochim. Cosmochim. Acta. 2014. V. 131. P. 290.

  112. Bürger S., Banik N.L., R. Buda R.A., Kratz J.V., Kuczewski B., Trautmann N. Speciation of the oxidation states of plutonium in aqueous solutions by UV/Vis spectroscopy, CE-ICP-MS and CE-RIMS // Radiochim. Acta. 2007. V. 95. P. 433.

  113. Shcherbina N.S., Perminova I.V., Kalmykov S.N., Kovalenko A.N., Haire R.G., Novikov A.P. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives // Environ. Sci. Technol. 2007. V. 41. № 20. P. 7010.

  114. El-Naggar H.A., Ezz El-Din M.R., Sheha R.R. Speciation of neptunium migration in under groundwater // J. Radioanal. Nucl. Chem. 2000. V. 246. P. 493.

  115. Sachs S., Bernhard G. Influence of humic acids on the actinide migration in the environment: Suitable humic acid model substances and their application in studies with uranium — A review // J. Radioanal. Nucl. Chem. 2011. V. 290. P. 17.

  116. Filella M., Hummel W. Trace element complexation by humic substances: issues related to quality assurance // Accred. Qual. Assur. 2011. V. 16. P. 215.

  117. Reiller P.E., Evans N., Szabo G. Complexation parameters for the actinides(IV)-humic acid system: A search for consistency and application to laboratory and field observations // Radiochim. Acta. 2008. V. 96. P. 345.

  118. Warwick P., Evans N., Hall A., Walker G., Steigleder E. Stability constants of U(VI) and U(IV)-humic acid complexes // J. Radioanal. Nucl. Chem. 2005. V. 266. № 2. P. 179.

  119. Moulin V., Tits J., Ouzounian G. Actinide speciation in the presence of humic substances in natural water conditions // Radiochim. Acta. 1992. V. 58–59. P. 179.

  120. Pang X.D., Peng A. Application of rare-earth elements in the agriculture of china and its environmental behavior in soil // J. Soils Sediments. 2001. V. 1. № 2. P. 124.

  121. Dupré B., Viers J., Dandurand J.-L., Polve M., Bénézeth P., Vervier Ph., Braun J.-J. Major and trace elements associated with colloids in organic-rich river waters: Ultrafiltration of natural and spiked solutions // Chem. Geol. 1999. V. 160. № 1–2. P. 63.

  122. Арбузов С.И., Финкельман Р.Б., Ильенок С.С., Маслов С.Г., Межибор А.М., Блохин М.Г. Формы нахождения редкоземельных элементов (La, Ce, Sm, Eu, Tb, Yb, Lu) в углях Северной Азии (обзор) // Химия твердого топлива. 2019. V. 1. Р. 3. (Arbuzov S.I., Finkelman R.B., Il’enok S.S., Maslov S.G., Mezhibor A.M., Blokhin M.G. Modes of occurrence of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) in coals of Northern Asia (review) // Solid Fuel Chem. 2019. V. 53. P. 1.)

  123. Wenming D., Hongxia Zh., Meide H., Zuyi T. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids — Part I: Eu3+ and Am3+ complexes in weakly acidic conditions // Appl. Radiat. Isot. 2002. V. 56. № 6. P. 959.

  124. Sonke J.E., Salters V.J.M. Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect // Geochim. Cosmochim. Acta. 2006. V. 70. P. 1495.

  125. Luo Y.-R., Byrne R.H. Carbonate complexation of yttrium and the rare earth elements in natural waters // Geochim. Cosmochim. Acta. 2004. V. 68. № 4. P. 691.

  126. Tang J., Johannesson K.H. Speciation of rare earth elements in natural terrestrial waters: Assessing the role of dissolved organic matter from the modeling approach // Geochim. Cosmochim. Acta. 2003. V. 67. № 13. P. 2321.

  127. Бек М. Химия равновесий реакций комплексообразования. М.: Мир, 1973. 360 с.

  128. Pourret O., Davranche M., Gruau G., Dia A. Rare earth elements complexation with humic acid // Chem. Geol. 2007. V. 243. P. 128.

  129. Stern J.C., Sonke J.E., Salters V.J.M. A capillary electrophoresis-ICP-MS study of rare earth element complexation by humic acids // Chem. Geol. V. 246. P. 170.

  130. Takahashi Y., Minai Y., Ambe Sh., Makide Y., Ambe F., Tominaga T. Simultaneous determination of stability constants of humate complexes with various metal ions using multitracer technique // Sci. Total Environ. 1997. V. 198. № 1. P. 61.

  131. Yamamoto Y., Takahashi Y., Shimizu H. Interpretation of REE patterns in natural water based on the stability constants // Geochim. Cosmochim. Acta. 2006. V. 70. (18 Suppl. 1). P. A717.

  132. Pedrot M., Dia A., Davranche M. Dynamic structure of humic substances: Rare earth elements as a fingerprint // J. Colloid Interface Sci. 2010. V. 345. P. 206.

  133. Pourret O., Martinez R.E. Modeling lanthanide series binding sites on humic acid // J. Colloid Interface Sci. 2009. V. 330. № 1. P. 45.

  134. Варшал В.А., Велюханова Т.К., Чхетия Д.Н., Холин Ю.В., Шумская Т.В. Тютюнник О.А., Кощеева И.Я., Корочанцев А.В. Сорбция на гуминовых кислотах как основа механизма первичного накопления золота и элементов группы платины в черных сланцах // Литология и полезные ископаемые. 2000. № 6. С. 605. (Varshal G.M., Velyukhanova T.K., Chkhetiya D.N., Kholin Yu.V., Shumskaya T.V., Tyutyunnik O.A., Koshcheeva I.Ya., Korochantsev A.V. Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales // Lithol. Miner. Resour. 2000. V. 35. P. 538.)

  135. Dong W., Li W., Tao Z. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids II. Tb3+, Yb3+ and Gd3+ complexes in weakly alkaline conditions // Appl. Radiat. Isot. 2002. V. 56. P. 967.

  136. He E., Lü Ch., He J., Zhao B., Wang J. Binding characteristics of Cu2+ to natural humic acid fractions sequentially extracted from the lake sediments // Environ. Sci. Pollut. Res. 2016. V. 23. Article 22667.

  137. World Health Organization, Guidelines for Drinking-water Quality. 4th edition incorporating the 1st addendum. Geneva: WHO, 2017. 542 p.

  138. . СанПиН 2.1.3684-21. Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2021. 75 с.

  139. РД 52.24.643-2002. Методические указания. Метод комплексной оценки степени загрязненности поверхностных вод по гидрохимическим показателям. СПб.: Гидрометеоиздат, 2003. 55 с.

  140. Lister S.K., Line M.A. Potential utilisation of sewage sludge and paper mill waste for biosorption of metals from polluted waterways // Bioresour. Technol. 2001. V. 79. P. 35.

  141. Lai C.-H., Chen C.-Y., Wei B.-L., Yeh S.-H. Cadmium adsorption on goethite-coated sand in the presence of humic acid // Water Res. 2002. V. 36. P. 4943.

  142. Koopal L.K., van Riemsdijk W.H., Kinniburgh D.G. Humic matter and contaminants. General aspects and modeling metal ion binding // Pure Appl. Chem. 2001. V. 73. P. 2005.

  143. Seki S., Suzuki A. Adsorption of heavy metal ions onto insolubilized humic acid // J. Colloid Interface Sci. 1995. V. 171. P. 490.

  144. Abollino O., Aceto M., Malandrino M., Sarzanini C., Mentasti E. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances // Water Res. 2003. V. 37. P. 1619.

  145. Pesavento M., Profuma A., Alberti G., Conti F. Adsorption of lead(II) and copper(II) on activated carbon by complexation with surface functional groups // Anal. Chim. Acta. 2003. V. 480. P. 171.

  146. Liu A., Gonzalez R.D. Modeling adsorption of copper(II), cadmium(II) and lead(II) on purified humic acid // Langmuir. 2000. V. 16. P. 3902.

  147. Guthrie J.W., Mandal R., Salam M.S.A., Hassan M.N., Murimboh J., Chakrabati C.L., Back M.H., Gregoire D.C. Kinetic studies of nickel speciation in model solutions of a well-characterized humic acid using the competing ligand exchange method // Anal. Chim. Acta. 2003. V. 480. P. 157.

  148. Baker H., Khalili F. Comparative study of binding strengths and thermodynamic aspects of Cu(II) and Ni(II) with humic acid by Schubert’s ion-exchange method // Anal. Chim. Acta. 2003. V. 497. P. 235.

  149. Naceur W.M., Ait Messaoudene N., Aggoun A. Microfiltration reinforced adsorption of humic acids onto modified Algerian clay // Desalination. 2003. V. 158. P. 271.

  150. Baker H., Khalili F. Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: temperature and pH dependence // Anal. Chim. Acta. 2004. V. 516. P. 179.

  151. Gezici O., Kara H., Ayar A., Topkafa M. Sorption behavior of Cu(II) ions on insolubilized humic acid under acidic conditions: An application of Scatchard plot analysis in evaluating the pH dependence of specific and nonspecific bindings // Sep. Purif. Technol. 2007. V. 55. P. 132.

  152. Cezikova J., Kozler J., Madronova L., Novak J., Janos P. Humic acid from coals of the North-Bohemian coal field II. Metal-binding capacity under static conditions // React. Funct. Polym. 2001. V. 47. P. 111.

  153. Ran Y., Fu J., Rate A.W., Gilkes R.J. Adsorption of Au(I, III) complexes on Fe, Mn oxides and humic acid // Chem. Geol. 2002. V. 185. P. 33–49.

  154. Kyziol J., Twardowska I., Schmitt-Kopplin Ph. The role of humic substances in chromium sorption onto natural organic matter (peat) // Chemosphere. 2006. V. 63. P. 1974.

  155. Klucakova M., Pekar M. New model for equilibrium sorption of metal ions on solid humic acids // Colloids Surf. A. 2006. V. 286. P. 126.

  156. Arslan G., Edebali S., Pehlivan E. Physical and chemical factors affecting the adsorption of Cr(VI) via humic acids extracted from brown coals // Desalination. 2010. V. 255. P. 117.

  157. Çelebi O., Erten H.N. Adsorption behavior of radionuclides, 137Cs and 140Ba, onto solid humic acid / Survival and Sustainability. Environmental Earth Sciences s.l. / Eds. Gökçekus H., Türker U., LaMoreaux J.W. Berlin, Heidelberg: Springer-Verlag, 2011. P. 1065.

  158. Yang K., Miao G., Wu W., Lin D., Pan B., Wu F., Xing B. Sorption of Cu2+ on humic acids sequentially extracted from a sediment // Chemosphere. 2015. V. 138. P. 657.

  159. Жеребцов С.И., Малышенко Н.В., Брюховецкая Л.В., Лырщиков С.Ю., Исмагилов З.Р. Сорбция катионов меди из водных растворов бурыми углями и гуминовыми кислотами // Химия твердого топлива. 2015. № 5. С. 30. (Zherebtsov S.I., Malyshenko N.V., Bryukhovetskaya L.V., Lyrshchikov S.Yu., Ismagilov Z.R. Sorption of copper cations from aqueous solutions by brown coals and humic acids // Solid Fuel Chem. 2015. V. 49. № 5. P. 294.)

  160. Брюховецкая Л.В., Жеребцов С.И., Малышенко Н.В., Исмагилов З.Р. Изучение методом ЭПР сорбции катионов меди нативными и модифицированными гуминовыми кислотами // Кокс и химия. 2016. № 11. С. 26. (Bryukhovetskaya L.V., Zherebtsov S.I., Malyshenko N.V., Ismagilov Z.R. Sorption of copper cations by native and modified humic acids // Coke and Chemistry. 2016. V. 59. № 11. P. 420.)

  161. Zaki A.A., Ahmad M.I. Batch and chromatographic removal of Nd3+ and Dy3+ ions from waste solutions using humic acid // J. Environ. Chem. Eng. 2016. V. 4. P. 4310.

  162. Khalili F.I., Khalifa A., Al-Banna G. Removal of uranium(VI) and thorium(IV) by insolubilized humic acid originated from Azraq soil in Jordan // J. Radioanal. Nucl. Chem. 2017. V. 311. P. 1375.

  163. Qi Y., Zhu J., Fu Q., Hu H., Rong X., Huang Q. Characterization and Cu sorption properties of humic acid from the decomposition of rice straw // Environ. Sci. Pollut. Res. 2017. V. 24. P. 23744.

  164. Жеребцов С.И., Малышенко Н.В., Брюховецкая Л.В., Исмагилов З.Р. Изучение сорбции катионов марганца модифицированными гуминовыми кислотами бурых углей // Кокс и химия. 2017. № 11. С. 43. (Zherebtsov S.I., Malyshenko N.V., Bryukhovetskaya L.V., Ismagilov Z.R. Sorption of manganese cations by modified humic acids from lignite // Coke and Chemistry. 2017. V. 60. № 11. P. 433.)

  165. Wei L., Li J., Xue M., Wang Sh., Li Q., Qin K., Jiang J., Ding J., Zhao Q. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: Sorption properties and mechanisms // Bioresour. Technol. 2019. V. 291. Article 121868.

  166. Лодыгин Е.Д. Сорбция ионов Cu2+ и Zn2+ гуминовыми кислотами тундровой торфяно-глеевой почвы // Почвоведение. 2019. № 7. С.817. (Lodygin E.D. Sorption of Cu2+ and Zn2+ ions by humic acids of tundra peat gley soils (histic reductaquic cryosols) // Eurasian Soil Sci. 2019. V. 52. № 7. P. 769.)

  167. Gezici O., Kara H., Ersoz M., Abali Y. The sorption behavior of a nickel-insolubilized humic acid system in a column arrangement // J. Colloid Interface Sci. 2005. V. 292. P. 381.

  168. El-Eswed B., Khalili F. Adsorption of Cu(II) and Ni(II) on solid humic acid from the Azraq area, Jordan // J. Colloid Interface Sci. 2006. V. 299. № 2. P. 497.

  169. Lemarchand E., Schott J., Gaillardet J. Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed // Geochim. Cosmochim. Acta. 2005. V. 69. № 14. P. 3519.

  170. Zhang J., Yin H., Chen L., Liu F., Chen H. The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid // Environ. Pollut. 2018. V. 237. P. 740.

  171. Pilarski J., Waller P., Pickering W. Sorption of antimony species by humic acid // Water Air Soil Pollut. 1995. V. 84. P. 51.

  172. Kamei-Ishikawa N., Tagami K., Uchida S. Sorption kinetics of selenium on humic acid // J. Radioanal. Nucl. Chem. 2007. V. 274. № 3. P. 555.

  173. Chen L., Zhu Y., Luo H., Yang J. Characteristic of adsorption, desorption, and co-transport of vanadium on humic acid colloid // Ecotoxicol. Environ. Saf. 2020. V. 190. Article 110087.

  174. Жеребцов С.И., Малышенко Н.В., Брюховецкая Л.В., Лырщиков С.Ю., Исмагилов З.Р. Сорбция катионов кобальта гуминовыми кислотами // Кокс и химия. 2018. № 7. С.35. (Zherebtsov S.I., Malyshenko N.V., Bryukhovetskaya L.V., Lyrshchikov S.Yu., Ismagilov Z.R. Sorption of cobalt cations by humic acids // Coke and Chemistry. 2018. V. 61. № 7. P. 35.)

  175. Ghabbour E.A., Shaker M., El-Toukhy A., Abid I.M., Davies G. Thermodynamics of metal cation binding by a solid soil derived humic acid. 2. Binding of Mn(II), Co(NH3)3+aq and Hg(II) // Chemosphere. 2006. V. 64. P. 826.

  176. Madronová L., Kozler J., Čežíková J. Novak J., Janos P. Humic acids from coal of the North-Bohemia coal field III. Metal-binding properties of humic acids – measurements in a column arrangement // React. Funct. Polym. 2001. V. 47. P. 119.

  177. Martyniuk H., Wieckowska J. Adsorption of metal ions on humic acids extracted from brown coals // Fuel Process. Technol. 2003. V. 84. P. 23.

  178. Fukushima M., Miura A., Sasaki M., Izumo K. Effect of an allophanic soil on humification reactions between catechol and glycine: Spectroscopic investigations of reaction products // J. Mol. Struct. 2009. V. 917. P. 142.

  179. Zhang Y., Yue D., Lu X., Zhao K., Ma H. Role of ferric oxide in abiotic humification enhancement of organic matter // J. Mater. Cycles Waste Manag. 2017. V. 19. P. 585.

  180. Yang T., Hodson M.E. Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil // Sci. Total Environ. 2019. V. 647. P. 290.

  181. Yang T., Hodson M.E. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water // Sci. Total Environ. 2018. V. 635. P. 1036.

  182. Liu S., Liu Y., Pan B., He Y., Li B., Zhou D., Xiao Y., Qiu H., Vijver M.G., Peijnenburg W.J.G.M. The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion // Chemosphere. 2020. V. 245. Article 125612.

  183. Zhang D., Chen H., Xia J., Nie Zh., Fan X., Liu H., Zheng L., Zhang L., Yang H. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization // J. Hazard. Mater. 2020. V. 384. Article 121359.

  184. Kirishima A., Ohnishi T., Sato N., Tochiyama O. Simplified modeling of the complexation of humic substance for equilibrium calculations // J. Nucl. Sci. Technol. 2010. V. 47. № 11. P. 1044.

  185. Glaus M.A., Hummel W., Van Loon L.R. Equilibrium dialysis-ligand exchange: Adaptation of the method for determination of conditional stability constants of radionuclide-fulvic acid complexes // Anal. Chim. Acta. 1995. V. 303. P. 321.

Дополнительные материалы отсутствуют.