Неоднородно заполненные вихревые кольца в нелинейной оптике

В. П. Рубан¹⁾

Институт теоретической физики им. Л. Д. Ландау РАН, 142432 Черноголовка, Россия

Поступила в редакцию 20 марта 2023 г. После переработки 21 марта 2023 г. Принята к публикации 21 марта 2023 г.

В рамках модели связанных нелинейных уравнений Шредингера численно выявлен новый тип долгоживущих уединенных структур для параксиальной оптики с двумя круговыми поляризациями света в однородной дефокусирующей Керровской среде с аномальной дисперсией групповой скорости. Найденный гибридный трехмерный солитон представляет собой вихревое кольцо на фоне плоской волны в одной из компонент, причем сердцевина вихря неоднородно по азимутальному углу заполнена другой компонентой. Существование в определенной параметрической области таких квазистационарных структур с пониженной симметрией связано с насыщением так называемой сосисочной неустойчивости, обусловленной эффективным поверхностным натяжением доменной стенки между двумя поляризациями.

DOI: 10.31857/S1234567823080049, EDN: wbpsqb

Введение. Как известно, характер распространения слабонелинейной квазимонохроматической световой волны в трехмерной оптической среде с Керровской нелинейностью определяется типом дисперсии групповой скорости (нормальная либо аномальная) и типом нелинейности (фокусирующая либо дефокусирующая). Для каждой из четырех возможных комбинаций характерны свои когерентные структуры и свои динамические режимы, приближенно описываемые нелинейным уравнением Шредингера (НУШ) с соответствующими коэффициентами (см., например, [1-4] и ссылки там). В частности, волна в дефокусирующей среде с аномальной дисперсией подобна устойчивой квантовой жидкости (разреженному бозе-конденсату холодных атомов при их взаимном отталкивании; НУШ при этом обычно называют уравнением Гросса-Питаевского). В такой системе, помимо темных солитонов, возможны топологические возбуждения в виде квантованных вихрей [5]. Аналогия идет еще дальше, если оптическая волна несет в себе две круговые поляризации, поскольку в этом случае свет описывается двумя связанными НУШ [6], равно как и бинарный бозе-конденсат [7–13]. Однако некоторая разница в постановке задач все же имеется, так как реальные бозе-конденсаты ограничены в пространстве удерживающим потенциалом ловушки, тогда как для света в однородной среде более реалистичной оказывается модель без внешнего потенциала.

Интересно отметить, что наличие второй компоненты позволяет существенно расширить набор доступных когерентных структур. Например, в типичном для нелинейной оптики режиме разделения фаз, помимо темных солитонов и квантованных вихрей в каждой из двух компонент, возможны еще доменные стенки, разделяющие области с правой и левой круговыми поляризациями [14–21]. Доменная стенка характеризуется эффективным поверхностным натяжением [10, 22], которое влияет на равновесную форму и динамику областей. Для бозе-конденсатов различные аспекты разделения фаз рассматривались в работах [23-41]. Важно, что существуют комбинированные вихрь-солитонные комплексы [9, 19–21, 42– 48]. Например, это может быть вихревое кольцо в одной из компонент, сердцевина которого образует потенциальную яму для другой компоненты и заполнена ею [49]. В данной работе получены новые результаты именно для таких структур применительно к нелинейной оптике.

Предварительные замечания. Для захваченных бинарных бозе-конденсатов недавно было теоретически найдено [49], что во внешнем квадратичном осесимметричном потенциале ловушки заполненное кольцо может быть как линейно устойчиво относительно азимутальных возмущений, так и неустойчиво, в зависимости от параметров. Неустойчивость, возникающая при увеличении количества захваченной второй компоненты, подобна так называемой сосисочной неустойчивости полого вихря в классической гидродинамике. Ее природу легко понять на примере прямого вихря с осесимметричными воз-

¹⁾e-mail: ruban@itp.ac.ru

мущениями. В том случае, когда ширина доменной стенки мала по сравнению с локальным радиусом сердцевины заполненного квантового вихря, классическая двухжидкостная модель позволяет записать функционал эффективной потенциальной энергии, минимум которого определяет устойчивое распределение второй компоненты вдоль оси вихря (см. [47] и ссылки там). Оказывается, что однородная конфигурация перестает быть устойчивой при превышении заполняющей компонентой некоторого критического количества на единицу длины. Минимум функционала в этом случае достигается на структурах типа сосисок (не вполне круглых пузырей). В случае заполненного кольца аккуратное аналитическое описание весьма затруднительно, но в качественном отношении неустойчивость аналогична. Спецификой системы в ловушке оказалась ненасыщаемость этой неустойчивости. В конечном итоге неустойчивое заполненное вихревое кольцо в конденсате разрушается после сложного взаимодействия (сопровождающегося перекачкой энергии) между неоднородными течениями второй компоненты вдоль сердцевины и движениями самого кольца на неоднородном фоне плотности [49].

В данной работе будет показано, что в однородном пространстве дело обстоит иначе. Оказывается, что заполненное оптическое вихревое кольцо на фоне однородной волны сохраняет свою целостность и распространяется на большие расстояния даже и в тех случаях, когда оно подвержено сосисочной неустойчивости. Разница по сравнению с захваченным ловушкой бозе-конденсатом состоит в отсутствии заметного потока энергии от степеней свободы, определяющих положение кольца в пространстве, к степеням свободы, описывающим азимутальное распределение второй компоненты. В зависимости от интенсивности волны и количества второй компоненты поведение системы будет разным (для кольца с заданным радиусом). При малом количестве второй компоненты либо при относительно слабой мощности фоновой волны начальная азимутальная неоднородность заполнения приводит к последующим попеременным утолщениям кольца то с одной его стороны, то с противоположной. Такое поведение характерно для одномерного нелинейного осциллятора с одноямным четным потенциалом (координатой этого осциллятора можно в грубом приближении считать амплитуду первой азимутальной гармоники распределения второй компоненты вдоль кольца). При большом заполнении либо при сильной нелинейности утолщение остается на месте и существенного перетекания второй компоненты вдоль кольца не происходит. Такая конфигурация соответствует нарушению симметрии в системе с двуямным одномерным потенциалом и свидетельствует о насыщении сосисочной неустойчивости.

Стоит еще отметить, что в двумерном пространстве аналогом вихревого кольца является вихревая пара. Два вихря могут быть неодинаково заполнены второй компонентой (см. [43] и ссылки там), и тогда это отдаленно напоминает рассматриваемую здесь ситуацию. Еще более отдаленный аналог – несимметричная пара так называемых темно-светлых солитонов в одном измерении (см. [50] и ссылки там). Одно из главных отличий трехмерного кольца – возможность продольных течений вдоль вихря, тогда как в 1D и 2D случаях перетекание "светлой" компоненты из одной потенциальной ямы (создаваемой вихревой или "темной" компонентой) в другую возможно только за счет туннелирования.

Модель. Мы рассматриваем трехмерную, оптически прозрачную, однородную диэлектрическую среду с изотропным законом дисперсии линейных волн $k(\omega) = \sqrt{\varepsilon(\omega)}\omega/c$ и с дефокусирующей Керровской нелинейностью. Будем полагать дисперсию групповой скорости аномальной (т.е. $k''(\omega) < 0$ в некотором диапазоне). Как правило, область аномальной дисперсии находится вблизи низкочастотного края окна прозрачности (в реальных веществах это обычно инфракрасная область спектра; см., например, [51, 52]).

Нелинейная по электрическому полю часть индукции на частоте ω предполагается в виде

$$\mathbf{D}^{(3)} = \alpha(\omega) |\mathbf{E}|^2 \mathbf{E} + \beta(\omega) (\mathbf{E} \cdot \mathbf{E}) \mathbf{E}^*$$
(1)

с отрицательными $\alpha(\omega)$ и $\beta(\omega)$. Определив амплитуды $A_{1,2}$ левой и правой круговых поляризаций с помощью формулы

$$\mathbf{E} = \left[(\mathbf{e}_x + i\mathbf{e}_y)A_1 + (\mathbf{e}_x - i\mathbf{e}_y)A_2 \right] / \sqrt{2} \qquad (2)$$

и подставив (1) в уравнения Максвелла, можно стандартным образом получить систему связанных НУШ для $A_{1,2}$ (см. [6, 14–21]).

Зафиксируем несущую частоту ω , соответствующее ей волновое число $k_0 = 2\pi/\lambda_0$, первую производную k'_0 . Как принято в оптике, эволюционной переменной вместо времени t у нас служит дистанция ζ вдоль оси пучка, а роль третьей "пространственной" координаты играет "запаздывающее" время $\tau = t - \zeta/v_{\rm gr}$, где $1/v_{\rm gr} = k'_0$. Выберем в качестве масштаба для поперечных координат большой радиус вихревого кольца $R_0 \sim 10^2 \lambda_0$. Продольную координату ζ будем измерять в единицах $k_0 R_0^2 \sim 10^5 \lambda_0$, переменную τ

в единицах $R_0\sqrt{k_0|k_0''|}$, а электрическое поле — в единицах $\sqrt{2\epsilon/|\alpha|}/(k_0R_0)$. В обезразмеренных таким образом переменных мы имеем следующую систему связанных НУШ для медленных комплексных огибающих $A_{1,2}(x, y, \tau, \zeta)$:

$$i\frac{\partial A_{1,2}}{\partial \zeta} = \left[-\frac{1}{2}\Delta + |A_{1,2}|^2 + g_{12}|A_{2,1}|^2\right]A_{1,2},\qquad(3)$$

где $\Delta = \partial_x^2 + \partial_y^2 + \partial_\tau^2$ – трехмерный оператор Лапласа в "координатном" пространстве (x, y, τ) . Параметр перекрестной фазовой модуляции $g_{12} = 1 + 2\beta/\alpha$ в типичном случае примерно равен 2. Условие $g_{12} > 1$ соответствует режиму разделения фаз.

Численный метод. Для численного моделирования использовался стандартный метод (Split-Step Fourier Method) второго порядка точности по эволюционной переменной ζ . Важное отличие от предыдущих работ [21, 40, 41] состоит в способе приготовления начального состояния. Поскольку идеальное вихревое кольцо – объект не статический [в пространстве (x, y, τ)], а стационарно движущийся с некоторой "скоростью" u (для определенности вдоль оси τ), удобно сделать замену

$$A_1(x, y, \tau, \zeta) = \sqrt{I_0} A(x, y, \tau - u\zeta, \zeta) e^{-iI_0\zeta}, \quad (4)$$

$$A_2(x, y, \tau, \zeta) = \sqrt{I_0} B(x, y, \tau - u\zeta, \zeta) e^{(iu\tau - i\mu_2\zeta)}, \quad (5)$$

где I_0 – интенсивность невозмущенной плоской волны, μ_2 – "химический потенциал" второй компоненты. В строго стационарном случае новые неизвестные функции $A(x, y, z, \zeta)$ и $B(x, y, z, \zeta)$ не зависели бы от ζ , причем вдали от кольца $A \to 1$ (новую "пространственную" переменную $z = \tau - u\zeta$ не следует путать с эволюционной переменной ζ).

Казалось бы, при моделировании консервативной системы для А и В, которая следует из уравнений (3), новые переменные никакого преимущества не дают. Но цель проведенной замены состоит в другом – получить возможность использовать метод распространения в мнимом времени (imaginary-time propagation) для численного приготовления начального состояния, как можно более близкого к стационару. Необходимо при этом подчеркнуть, что интересующее нас стационарное решение не является строгим минимумом соответствующего функционала $\mathcal{H}_u[A,B] - \int (I_0|A|^2 + \mu_2|B|^2) dx dy dz$, а лишь его седловой точкой. Например, по радиусу вихревого кольца этот функционал имеет максимум, так что в диссипативной процедуре, пока жесткие моды релаксируют, размер кольца медленно уходит от начального значения. Поэтому мы вынуждены ограничиться конечным псевдовременным интервалом в методе мнимого времени, что не позволяет нам полностью избавиться от возмущений в начальном состоянии. С другой стороны, моделирование с нестационарными возмущениями делает численные эксперименты более реалистичными и дает возможность оценить в целом устойчивость исследуемых структур.

Заметим еще, что все вычисления проводились в кубе $(2\pi)^3$ с периодическими граничными условиями по переменным x, y и z. Поэтому, строго говоря, представленные здесь структуры не являются вполне уединенными. Однако при радиусе кольца 1 влияние периодически расположенных "соседних" одинаковых вихрей не очень существенно.

Типичные значения параметров. Подбирая параметры u, I_0 и $\mu_2 \sim I_0$, а также затравочные функции A и B для процедуры распространения в мнимом времени, равно как и сам псевдовременной интервал, можно добиться достаточно "хорошего" начального состояния с желаемым значением количества второй компоненты $N_2 = \int |B|^2 dx dy dz$.

Поскольку безразмерную ширину сердцевины незаполненного вихря можно оценить как $\xi \sim 1/\sqrt{I_0}$, основной интерес представляют значения $I_0 = 16-$ 80, при которых (размерная) ширина сердцевины существенно меньше радиуса кольца, но все еще много больше длины волны для применимости квазимонохроматического приближения. Не следует также забывать об ограничении $\xi R_0 \sqrt{k_0 |k_0''|} \omega \gtrsim 2\pi$ на ширину кора по переменной τ , которое в случае ($\omega^2 |k_0''|/k_0$) < 1 является более жестким, чем $\xi k_0 R_0 \gtrsim 2\pi$.

Параметр u необходимо подбирать самосогласованно из того требования, чтобы последующее движение кольца в пространстве (x, y, z) происходило с как можно меньшей скоростью (на практике достаточно добиться остаточной скорости ≤ 0.2). Сами значения u при этом находятся в диапазоне от ≈ 1.5 при $I_0 = 16$ до ≈ 2.0 при $I_0 = 81$.

Эволюционный интервал по переменной ζ составлял не менее 60 единиц. Во всех случаях вихрьсолитонный комплекс не проявлял тенденции к заметному нарастанию амплитуд возмущений, что свидетельствует о долговременном характере рассматриваемых структур и их практической устойчивости.

Примеры. Первый пример квазистационарного заполненного вихревого кольца с нарушенной азимутальной симметрией приведен на рис. 1. Значения параметров в этом численном эксперименте были $I_0 = 25, u \approx 1.65, N_2 \approx 1.8$. Соответствующие профили интенсивностей $|A|^2, |B|^2$, а также вихревой фазы показаны на рис. 2. Для сравнения следует упомянуть, что с меньшим количеством второй компонен-

Рис. 1. (Цветной онлайн) Численный пример неоднородно заполненного квазистационарного вихревого кольца. Показана поверхность $|A(x, y, z)|^2 = 0.5$ на дистанции распространения $\zeta = 100$, причем цветом отмечено значение координаты z (см. подробности в тексте)

ты $N_2 \approx 0.6$ сосисочная неустойчивость отсутствовала, поскольку имел место режим колебаний для амплитуды первой азимутальной моды с переходом ее через нуль (причем без замедления вблизи нуля). Критическое значение заполнения оказалось в районе $N_{2,c} \approx 1.0$. При уменьшении интенсивности до $I_0 = 16$ даже сильно заполненный ("толстый") вихрь с $N_2 \approx 1.9$ не проявлял сосисочной неустойчивости. Напротив, увеличение интенсивности до $I_0 = 36$ уменьшало критическое заполнение до $N_{2,c} \approx 0.5$.

Так как безразмерный коэффициент эффективного поверхностного натяжения зависит от I_0 как $\sigma \propto \sqrt{I_0}$, следует ожидать особенно ярко выраженной сосисочной неустойчивости при больших значениях I_0 . Пример сильно неоднородного вихревого кольца для случая $I_0 = 81$, $u \approx 2.0$, $N_2 \approx 1.0$ представлен на рис. 3. Видно, что на значительной части кольца вторая компонента практически полностью отсутствует — она вся выдавлена в четко оформленный пузырь, так что конфигурация напоминает сумку с ремнем или гимнастическую гирю.

Заключение. Таким образом, в данной работе численно показано, что в дефокусирующей Керровской оптической среде с аномальной дисперсией групповой скорости заполненное вихревое кольцо при достаточно сильной интенсивности фоновой волны подвержено сосисочной неустойчивости. Однако, в отличие от подобных объектов в захваченных бинарных бозе-конденсатах холодных атомов, здесь неустойчивость насыщается и приводит к ранее неиз-

Рис. 2. (Цветной онлайн) Сечение вихревого кольца из рис. 1 плоскостью y = 0: (a) – относительная интенсивность первой компоненты; (b) – фаза первой компоненты; (c) – относительная интенсивность второй компоненты

вестным долгоживущим, существенно трехмерным структурам, которые не обладают осевой симметрией. Характерный размер таких комплексов оценивается в сотню микрон, а длина их распространения составляет метры.

Рис. 3. Численный пример насыщения сильной сосисочной неустойчивости при $I_0=81,\ u\approx 2.0,\ N_2\approx 1.0$

Интересно также отметить, что при учете относительно слабого линейного поглощения света параметр I_0 начинает экспоненциально уменьшаться по мере распространения волны. Если на начальном этапе имелось квазистационарное кольцо с нарушенной симметрией, то через какой-то интервал ζ структура должна перейти в режим без сосисочной неустойчивости и в среднем восстановить осевую симметрию. Соответствующие численные эксперименты (их результаты здесь не приведены) подтвердили такой сценарий.

Работа выполнена в рамках госзадания # 0029-2021-0003.

- Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 1st ed., Academic Press, California, USA (2003).
- V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Springer-Verlag, Berlin, Heidelberg (1999).
- B.A. Malomed, Multidimensional Solitons, AIP Publishing (online), Melville, N. Y. (2022); https://doi.org/10.1063/9780735425118.
- F. Baronio, S. Wabnitz, and Yu. Kodama, Phys. Rev. Lett. 116, 173901 (2016).
- P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, *The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings*, SIAM, Philadelphia (2015).
- 6. А.Л. Берхоер, В.Е. Захаров, ЖЭТФ **58**, 903 (1970).
- T.-L. Ho and V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).

- H. Pu and N.P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).
- B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).
- S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).
- G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
- 12. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).
- 13. P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).
- M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 3389 (1994).
- M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 4512 (1994).
- A. P. Sheppard and M. Haelterman, Opt. Lett. 19, 859 (1994).
- Yu. S. Kivhsar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
- N. Dror, B. A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602 (2011).
- A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).
- A.S. Desyatnikov, L. Torner, and Yu.S. Kivshar, Progress in Optics 47, 291 (2005).
- 21. В. П. Рубан, Письма в ЖЭТФ 117, 292 (2023).
- 22. B. van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).
- K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).
- H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).
- N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).
- H. Kokubo, K. Kasamatsu, and H. Takeuchi, Phys. Rev. A 104, 023312 (2021).
- K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).
- S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).
- T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).
- K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).
- D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).
- D. K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P. G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A **102**, 033320 (2020).
- K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).
- K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).
- P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).

- K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 93, 250406 (2004).
- H. Takeuchi, K. Kasamatsu, M. Tsubota, and M. Nitta, Phys. Rev. Lett. **109**, 245301 (2012).
- 38. M. Nitta, K. Kasamatsu, M. Tsubota, and H. Takeuchi, Phys. Rev. A 85, 053639 (2012).
- K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).
- 40. В.П. Рубан, Письма в ЖЭТФ 113, 848 (2021).
- 41. В.П. Рубан, ЖЭТФ **160**, 912 (2021).
- K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. **105**, 160405 (2010); Erratum, Phys. Rev. Lett. **106**, 199903 (2011).
- M. Pola, J. Stockhofe, P. Schmelcher, and P.G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).

- S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).
- A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A **101**, 013630 (2020).
- 46. A. Richaud, V. Penna, and A.L. Fetter, Phys. Rev. A 103, 023311 (2021).
- 47. В. П. Рубан, Письма в ЖЭТФ **113**, 539 (2021).
- 48. В. П. Рубан, Письма в ЖЭТФ **115**, 450 (2022).
- 49. V. P. Ruban, W. Wang, C. Ticknor, and P. G. Kevrekidis, Phys. Rev. A 105, 013319 (2022).
- G. C. Katsimiga, P. G. Kevrekidis, B. Prinari, G. Biondini, and P. Schmelcher, Phys. Rev. A 97, 043623 (2018).
- X. Liu, B. Zhou, H. Guo, and M. Bache, Opt. Lett. 40, 3798 (2015).
- 52. X. Liu and M. Bache, Opt. Lett. 40, 4257 (2015).