## Ванадий-содержащие планарные гетероструктуры на основе топологических изоляторов

 $E. K. Петров^{+*1}$ , И. В. Силкин<sup>+</sup>, В. М. Кузнецов<sup>+</sup>, Т. В. Меньщикова<sup>+</sup>, Е. В. Чулков<sup>×\*+</sup>

+ Томский государственный университет, 634050 Томск, Россия

\* Санкт-Петербургский государственный университет, 198504 С.-Петербург, Россия

<sup>×</sup> Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20080 San Sebastián/Donostia, Basque Country, Spain

> Поступила в редакцию 7 декабря 2022 г. После переработки 22 декабря 2022 г. Принята к публикации 23 декабря 2022 г.

Представлены результаты теоретического исследования V-содержащих гетероструктур, представляющих собой ультратонкую магнитную пленку на поверхности немагнитного топологического изолятора. Показана возможность управления смещением точки Дирака в k-пространстве, являющегося мерой протяженности особой плоской зоны, возникающей при формировании доменных стенок на поверхности антиферромагнитных топологических изоляторов. Смещение точки Дирака обратно пропорционально значению групповой скорости электронов в точке Дирака и пропорционально степени локализации топологического состояния в магнитной пленке. Управление смещением осуществляется путем подбора подложки с определенным значением работы выхода. Предложены конкретные системы для экспериментального исследования особенностей плоских зон в антиферромагнитных топологических изоляторах.

DOI: 10.31857/S1234567823030096, EDN: oxnfkv

1. Введение. Сочетание нетривиальной зонной топологии и обменного взаимодействия позволяет реализовать ряд перспективных с прикладной точки зрения физических эффектов, таких как квантовый аномальный эффект Холла [1-9] и топологический магнето-электрический эффект [4, 10, 11]. Кроме того, такое сочетание может приводить к возникновению новых состояний вещества, обладающих уникальными свойствами. Одним из таких состояний вещества является фаза антиферромагнитного топологического изолятора (АФМ ТИ) [5, 12–17]. В зависимости от направления вектора намагниченности (параллельно или перпендикулярно плоскости поверхности), в зонной структуре поверхности таких систем могут присутствовать как бесщелевые (подобно трехмерным топологическим изоляторам), так и обменно-расщепленные топологические поверхностные состояния. Это в сочетании с наличием возможности управления спин-зависимыми транспортными свойствами делает такие материалы особенно интересными для практического применения. Первым представителем класса АФМ ТИ является соединение MnBi<sub>2</sub>Te<sub>4</sub>, свойства которого сначала были теоретически предсказаны, а после получили экс-

В недавней работе [17] теоретически было предсказано, что формирование магнитных неоднородностей может оказывать существенное влияние на электронные свойства АФМ ТИ. Так, наличие доменных стенок на поверхности планарных АФМ ТИ (с намагниченностью в плоскости (0001)) [26, 41, 42] приводит к появлению дополнительных специфических одномерных состояний, модифицирующих энергетический спектр поверхности [17, 27, 43, 44]. Эти одномерные состояния формируются за счет соединения двух точек Дирака от разных доменов и имеют вид плоских зон с высокой эффективной массой и плотностью состояний. Плоские зоны являются предметом интенсивного исследования [45–48] и могут проявлять себя в ряде таких важных физи-

периментальное подтверждение [12]. Благодаря намагниченности перпендикулярно плоскости (0001) в тонких пленках  $MnBi_2Te_4$  и системах на его основе удалось наблюдать квантовый аномальный эффект Холла [6, 7] и квантованную холловскую проводимость во внешнем магнитном поле [7, 18]. Открытие этого соединения спровоцировало рост как теоретических, так и экспериментальных исследований соединения  $MnBi_2Te_4$  [6, 11, 19–33] и систем на его основе, в том числе тонких пленок [5, 14, 34], гетероструктур [35, 36] и сверхрешеток [37–40].

 $<sup>^{1)}{\</sup>rm e\text{-}mail:}$ evg.konst.petrov@gmail.com



Рис. 1. (Цветной онлайн) (a) – Кристаллическая структура объема V-содержащих соединений на примере VBi<sub>2</sub>Te<sub>4</sub>. (b), (c) – Зонные структуры изолированных SL VBi<sub>2</sub>Se<sub>4</sub> и VBi<sub>2</sub>Te<sub>4</sub>. (d) – Кристаллическая структура рассматриваемых гетероструктур на примере VBi<sub>2</sub>Te<sub>4</sub>/Bi<sub>2</sub>Te<sub>3</sub>. Синими стрелками показаны магнитные моменты

ческих эффектов, как орбитальный магнетизм [49], коррелированный изолятор [50], сверхпроводимость [49, 51, 52]. Необходимо отметить, что сверхпроводимость также наблюдается уже в немагнитных ТИ за счет эффекта близости [53–55].

Интенсивность связанных с плоской зоной эффектов пропорциональна протяженности плоской зоны, которая зависит от электронных и магнитных характеристик конкретного материала. В связи с этим в настоящей работе мы показываем эффективный способ увеличения протяженности плоской зоны путем формирования гетероструктур типа магнитного продолжения ТИ [56], представляющих собой ультратонкую магнитную пленку на поверхности ТИ. На основе полученных результатов мы также предлагаем системы для экспериментального наблюдения плоских зон в планарных топологических магнетиках.

2. Результаты и обсуждение. В зонной структуре поверхности (0001) планарных АФМ ТИ присутствует бесщелевое состояние (конус Дирака), точка Дирака которого смещена из точки  $\overline{\Gamma}$  в направлении, перпендикулярном направлению намагниченности [17] аналогично другим магнитным системам на основе ТИ с намагниченностью в плоскости поверхности [3, 32, 57, 58]. Было показано, что для таких систем смещение точки Дирака приближенно описывается выражением [17]:

$$\Delta k = j \frac{M_0}{v},\tag{1}$$

где j – энергия обменного взаимодействия,  $M_0$  – намагниченность поверхности, v – групповая скорость электронов в точке Дирака. Протяженность плоской зоны, которая формируется при наличии

магнитной неоднородности в виде доменной стенки [17, 43, 44], составляет  $2\Delta k$ . В данной работе мы рассмотрели один из возможных вариантов увеличения  $\Delta k$ , а именно, путем варьирования групповой скорости электронов в точке Дирака v при фиксированной величине намагниченности  $M_0$ . Такой вариант позволяет получить более "тонкую настройку" электронной структуры и может быть реализован с помощью конструирования магнитных гетероструктур в виде ультратонкой магнитной пленки на подложке ТИ. В таком подходе для гетероструктур с одинаковым типом магнитной пленки намагниченность  $M_0$ поверхностных семислойных блоков, а также энергия обменного взаимодействия *ј* будут одинаковыми, поскольку эти величины в основном будут определяться магнитной пленкой. Кроме того, дополнительным фактором, влияющим на величину смещения, является степень локализации топологического состояния в магнитной пленке.

В качестве материала для тонкой магнитной пленки были выбраны фрагменты недавно предсказанных тетрадимитоподобных межплоскостных планарных антиферромагнетиков VBi<sub>2</sub>Se<sub>4</sub> (тривиальный изолятор) и VBi<sub>2</sub>Te<sub>4</sub> (АФМ ТИ) (магнитные моменты на атомах V лежат в плоскости (0001), рис. 1а) [17]. Ультратонкие пленки этих соединений, состоящие из одного структурного блока толщиной семь атомных слоев (septuple layer, SL), являются двумерными ферромагнетиками, поскольку содержат только один атомный слой ванадия, и обладают полупроводниковой зонной структурой (рис. 1b, c). В качестве подложек для VBi<sub>2</sub>Se<sub>4</sub> были выбраны тетрадимитоподобные ТИ Bi<sub>2</sub>Se<sub>3</sub> и PbBi<sub>2</sub>Se<sub>4</sub>, а для  $VBi_2Te_4$  –  $Bi_2Te_3$ ,  $PbBi_2Te_4$ ,  $SnBi_2Te_4$  и GeBi<sub>2</sub>Te<sub>4</sub> (рис. 1d). Выбор материалов подложек

| Гетероструктура                          | $a_1/a_2~({ m \AA})$ | $\Delta E_1/\Delta E_2$ (эB) | $\Phi_1/\Phi_2~(\mathrm{sB})$ | $\Delta k \cdot 10^{-3} \ ({\rm A}^{-1})$ | $v (\mathbf{s} \mathbf{B} \cdot \mathbf{A})$ |
|------------------------------------------|----------------------|------------------------------|-------------------------------|-------------------------------------------|----------------------------------------------|
| $VBi_2Te_4$ (поверхность)                | —                    |                              | —                             | 3.38                                      | 1.92                                         |
| $\mathrm{VBi_2Te_4}/\mathrm{GeBi_2Te_4}$ | 4.338 / 4.323        | $0.34\ /\ 0.15$              | $5.00 \ / \ 4.70$             | 2.20                                      | 1.76                                         |
| $VBi_2Te_4/SnBi_2Te_4$                   | $4.338 \ / \ 4.395$  | $0.34\ /\ 0.02$              | $5.00 \ / \ 4.76$             | 4.00                                      | 1.73                                         |
| $VBi_2Te_4/Bi_2Te_3$                     | 4.338 / 4.384        | $0.34\ /\ 0.08$              | $5.00 \ / \ 5.05$             | 5.18                                      | 1.68                                         |
| $VBi_2Te_4/PbBi_2Te_4$                   | 4.338 / 4.452        | $0.34\ /\ 0.12$              | $5.00 \ / \ 5.04$             | 5.43                                      | 1.69                                         |
| $VBi_2Se_4$ (поверхность)                | —                    | —                            | —                             | _                                         | —                                            |
| $VBi_2Se_4/Bi_2Se_3$                     | 4.078 / 4.114        | $0.67\ /\ 0.31$              | $5.62 \ / \ 5.42$             | 5.34                                      | 2.16                                         |
| $VBi_2Se_4/PbBi_2Se_4$                   | 4.078 / 4.160        | $0.67 \ / \ 0.32$            | $5.62 \ / \ 5.37$             | 5.64                                      | 2.12                                         |

**Таблица 1.** Соотношение параметров решетки  $a_i$ , энергетических щелей  $\Delta E_i$  и работ выхода  $\Phi_i$  для свободного магнитного семислойника (i = 1) и подложки (i = 2), а также смещения точки Дирака  $\Delta k$  и значения групповой скорости v в точке Дирака для соответствующих гетероструктур

обусловлен изоструктурностью подложки и VBi<sub>2</sub>Se<sub>4</sub> или VBi<sub>2</sub>Te<sub>4</sub>, близостью значений параметров решетки и необходимым сочетанием работ выхода, входящих в гетероструктуру компонент (см. табл. 1) [56, 59].

Как видно из рис. 2, в энергетических спектрах чистых подложек присутствует характерное для ТИ бесщелевое поверхностное состояние (конус Дирака). Осаждение магнитного V-содержащего SL на поверхность ТИ приводит к модификации формы конуса за счет смещения точки Дирака как по энергии, так и в k-пространстве. В исследуемых гетероструктурах точка Дирака смещается по энергии вверх, что обусловлено соотношениями работ выхода и энергетических щелей V-содержащего SL и подложки (см. схемы на рис. 2 и табл. 1) – аналогично тому, как это было показано для немагнитных гетероструктур на основе ТИ [59]. В случае гетероструктур VBi<sub>2</sub>Te<sub>4</sub>/Bi<sub>2</sub>Te<sub>3</sub>, VBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub> и VBi<sub>2</sub>Te<sub>4</sub>/GeBi<sub>2</sub>Te<sub>4</sub> энергетические щели магнитной пленки и подложки частично перекрыты. В остальных гетероструктурах объемная щель подложки полностью встраивается в соответствующую щель магнитной пленки. Подобное сочетание энергетических щелей обеспечивает значительную гибридизацию поверхностного состояния подложки с состояниями ванадий-содержащей магнитной пленкой, что приводит к смещению точки Дирака вверх по энергии [59]. Одновременно с этим наличие магнетизма индуцирует дополнительный сдвиг точки Дирака из центра двумерной зоны Бриллюэна (точки  $\Gamma$ ) в направлении, перпендикулярном намагниченности поверхности, на величину  $\Delta k$  (см. табл. 1).

Как видно из рис. 2 и табл. 1, для рассмотренных гетероструктур смещение точки Дирака из точки  $\overline{\Gamma}$  подчиняется описанной выше зависимости: при уменьшении скорости Дирака v смещение точки Дирака  $\Delta k$  возрастает. Более того, можно заметить,

Письма в Ж<br/>ЭТФ том 117 вып.3-4 2023

что в спектрах гетероструктур VBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>,  $VBi_2Te_4/Bi_2Te_3$  и  $VBi_2Te_4/SnBi_2Te_4$  полученное значение  $\Delta k$  больше, чем в спектре поверхности A $\Phi$ M ТИ VBi<sub>2</sub>Te<sub>4</sub>. Дополнительной причиной такого эффекта может являться то, что в рассматриваемых гетероструктурах намагничен только поверхностный V-содержащий SL. В VBi<sub>2</sub>Te<sub>4</sub>, напротив, намагничен каждый SL, причем соседние SL упорядочены антиферромагнитно. Несмотря на то, что поверхностное состояние преимущественно локализовано в поверхностном SL, его волновая функция проникает и в более глубокий (приповерхностный) SL. Это приводит к тому, что в рассматриваемых гетероструктурах обменное взаимодействие с поверхностным состоянием сильнее, чем в VBi<sub>2</sub>Te<sub>4</sub>, поскольку не ослабляется антиферромагнитным межслоевым упорядочением. При этом величина  $\Delta k$  также зависит от степени локализации топологического состояния во внешнем магнитном блоке. Как видно из рис. 2, максимальное смещение среди рассмотренных гетероструктур с магнитной пленкой VBi<sub>2</sub>Te<sub>4</sub> реализуется в VBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>, а минимальное – в VBi<sub>2</sub>Te<sub>4</sub>/GeBi<sub>2</sub>Te<sub>4</sub>. При этом полученные значения смещений  $\Delta k$  по величине сравнимы с экспериментально наблюдаемыми значениями протяженности плоских зон для систем на основе графена [60-64], что делает их потенциальными кандидатами для экспериментальных исследований плоских зон в планарных топологичеких магнетиках.

3. Заключение. В данной работе в рамках первопринципных методов расчета электронной структуры мы продемонстрировали возможность управления положением точки Дирака в гетероструктурах типа магнитного продолжения ТИ, состоящих из тонкой ванадий-содержащей магнитной пленки и подложки немагнитного ТИ. Показано, что смещение точки Дирака из центра зоны Бриллюэна, вызванное намагниченностью лежащей в плоскости (и,



Рис. 2. (Цветной онлайн) Зонные структуры рассмотренных гетероструктур вблизи уровня Ферми. Для каждой из рассмотренных гетероструктур показаны (слева направо): зонная структура поверхности подложки; зонная структура гетероструктуры в окрестности точки Дирака (DP); схематичное положение энергетических щелей (дна зоны проводимости (conduction band, CB) и потолка валентной зоны (valence band, VB) тонкой пленки и подложки относительно друг друга; распределение парциальной зарядовой плотности в точке Дирака поверхностного состояния по глубине (для гетероструктуры), также показана доля (в %) зарядовой плотности в магнитном семислойном блоке

соответственно, протяженность плоской зоны на доменных стенках) существенным образом зависит от групповой скорости электронов в точке Дирака, а также степени локализации топологического состояния в поверхностном блоке. Обнаруженные особенности и сделанные предсказания могут явиться стимулом для дальнейшего выращивания таких материалов. Рассмотренные в работе гетероструктуры являются перспективными кандидатами для выращивания и проведения экспериментальных исследований по наблюдению плоских зон на доменных стенках в планарных топологических магнетиках.

4. Методы расчета. Расчеты проведены с использованием метода проекционных плоских волн (PAW) [65], реализованного в программном пакете VASP [66–68]. Обменно-корреляционные эффекты были учтены в рамках обобщенного градиентного приближения в форме PBE [69]. Для корректного описания ван-дер-ваальсовского взаимодействия использовался метод DFT-D3 [70]. Состояния 3d оболочек V были описаны с использованием подхода GGA + U [71] в рамках схемы Дударева [72]. Значения параметра U были рассчитаны методом линейного отклика [73] и составили 4.8 и 4.7 эВ для гетероструктур с VBi<sub>2</sub>Se<sub>4</sub> и VBi<sub>2</sub>Te<sub>4</sub> соответственно.

Исследуемые гетероструктуры симулировались в модели повторяющихся пленок с вакуумными промежутками 12 Å. Гетероструктуры состояли из подложки ТИ толщиной 45 (для гетероструктур с  $Bi_2Se_3$ и  $Bi_2Te_3$ ) или 49 (для гетероструктур с  $PbBi_2Se_4$ ,  $PbBi_2Te_4$ ,  $GeBi_2Te_4$ ,  $SnBi_2Te_4$ ) атомных слоев и двух семислойных блоков (SL)  $VBi_2Se_4$  или  $VBi_2Te_4$  (по одному на каждой из поверхностей подложки). Межплоскостные расстояния были оптимизированы таким образом, чтобы действующие на атомы силы не превышали  $10^{-2}$  3B/Å.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках госзадания # FSWM-2020-0033.

Расчеты проведены с использованием оборудования ресурсного центра Научного парка СПбГУ "Вычислительный центр".

- R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science **329**, 61 (2010).
- C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Science **340**, 167 (2013).
- T. Hirahara, S.V. Eremeev, T. Shirasawa et al. (Collaboration), Nano Lett. 17, 3493 (2017).
- M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, I. P. Rusinov, A. Yu. Vyazovskaya, Y. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, 2D Materials 4, 025082 (2017).
- M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Phys. Rev. Lett. **122**, 107202 (2019).

- Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 67, 895 (2020).
- H. Deng, Z. Chen, A. Wołoś, M. Konczykowski, K. Sobczak, J. Sitnicka, I. V. Fedorchenko, J. Borysiuk, T. Heider, L. Pluciński, K. Park, A.B. Georgescu, J. Cano, and L. Krusin-Elbaum, Nature Physics 17, 36 (2021).
- V. N. Men'shov, I. Shvets, and E. V. Chulkov, JETP Lett. **110**(12), 771 (2019).
- E.K. Petrov, I.V. Silkin, T.V. Menshchikova, and E.V. Chulkov, JETP Lett. 109, 121 (2019).
- J. Wang, B. Lian, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 92, 081107 (2015).
- D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Phys. Rev. Lett. **122**, 206401 (2019).
- M. M. Otrokov, I. I. Klimovskikh, H. Bentmann et al. (Collaboration), Nature 576, 416 (2019).
- R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010).
- 14. C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Nat. Mater. 19, 522 (2020).
- J. Wang, B. Lian, and S.-C. Zhang, Phys. Rev. B 93, 045115 (2016).
- S.V. Eremeev, I.P. Rusinov, Y.M. Koroteev, A.Y. Vyazovskaya, M. Hoffmann, P.M. Echenique, A. Ernst, M.M. Otrokov, and E. V. Chulkov, J. Phys. Chem. Lett. 12, 4268 (2021).
- E.K. Petrov, V.N. Men'shov, I.P. Rusinov, M. Hoffmann, A. Ernst, M. M. Otrokov, V. K. Dugaev, T. V. Menshchikova, and E. V. Chulkov, Phys. Rev. B 103, 235142 (2021).
- J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang, National Science Review 7, 1280 (2020).
- Y. Gong, J. Guo, J. Li et al. (Collaboration), Chin. Phys. Lett. 36, 076801 (2019).
- A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh et al. (Collaboration), Sci. Rep. 10, 13226 (2020).
- B. Li, J.-Q. Yan, D.M. Pajerowski, E. Gordon, A.-M. Nedić, Y. Sizyuk, L. Ke, P. P. Orth, D. Vaknin, and R. J. McQueeney, Phys. Rev. Lett. **124**, 167204 (2020).
- D.A. Estyunin, I.I. Klimovskikh, A.M. Shikin, E.F. Schwier, M.M. Otrokov, A. Kimura, S. Kumar, S.O. Filnov, Z.S. Aliev, M.B. Babanly, and E.V. Chulkov, APL Mater. 8, 021105 (2020).
- R. C. Vidal, H. Bentmann, T. R. F. Peixoto et al. (Collaboration), Phys. Rev. B 100, 121104 (2019).
- 24. J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J.-G. Cheng, W. Wu, D. Vaknin, B. C. Sales, and R. J. McQueeney, Physical Review Materials 3, 064202 (2019).
- S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, H. Yi,
   S. Kempinger, J. Hu, C. A. Heikes, P. Quarterman,

Письма в ЖЭТФ том 117 вып. 3-4 2023

W. Ratcliff, J. A. Borchers, H. Zhang, X. Ke, D. Graf, N. Alem, C.-Z. Chang, N. Samarth, and Z. Mao, Physical Review Research 1, 012011 (2019).

- P. M. Sass, W. Ge, J. Yan, D. Obeysekera, J. J. Yang, and W. Wu, Nano Lett. 20, 2609 (2020).
- K. F. Garrity, S. Chowdhury, and F. M. Tavazza, Physical Review Materials 5, 024207 (2021).
- P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Phys. Rev. B 101, 161109 (2020).
- P. M. Sass, J. Kim, D. Vanderbilt, J. Yan, and W. Wu, Phys. Rev. Lett. **125**, 037201 (2020).
- A. Zeugner, F. Nietschke, A.U.B. Wolter et al. (Collaboration), Chem. Mater. 31, 2795 (2019).
- H. Li, S.-Y. Gao, S.-F. Duan et al. (Collaboration), Phys. Rev. X 9, (2019).
- Y.-J. Hao, P. Liu, Y. Feng et al. (Collaboration), Phys. Rev. X 9, 041038 (2019).
- Y.J. Chen, L.X. Xu, J.H. Li et al. (Collaboration), Phys. Rev. X 9, 041040 (2019).
- B. Lian, Z. Liu, Y. Zhang, and J. Wang, Phys. Rev. Lett. **124**, 126402 (2020).
- T. Hirahara, M.M. Otrokov, T.T. Sasaki et al. (Collaboration), Nat. Commun. 11, 4821 (2020).
- E. D. L. Rienks, S. Wimmer, J. Sánchez-Barriga et al. (Collaboration), Nature 576, 423 (2019).
- Z. S. Aliev, I. R. Amiraslanov, D. I. Nasonova, A. V. Shevelkov, N. A. Abdullayev, Z. A. Jahangirli, E. N. Orujlu, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, and E. V. Chulkov, J. Alloys Compd. 789, 443 (2019).
- C. Hu, K. N. Gordon, P. Liu et al. (Collaboration), Nat. Commun. 11, 97 (2020).
- Y. Gao, K. Liu, and Z.-Y. Lu, Physical Review Research 4, 023030 (2022).
- C. Hu, L. Ding, K. N. Gordon et al. (Collaboration), Sci. Adv. 6, eaba4275 (2020).
- K. Yasuda, M. Mogi, R. Yoshimi, A. Tsukazaki, K.S. Takahashi, M. Kawasaki, F. Kagawa, and Y. Tokura, Science **358**, 1311 (2017).
- I. T. Rosen, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D. Goldhaber-Gordon, Quantum Mater. 2, 69 (2017).
- I. P. Rusinov, V. N. Men'shov, and E. V. Chulkov, Phys. Rev. B 104, 035411 (2021).
- V. N. Men'shov, I. P. Rusinov, and E. V. Chulkov, JETP Lett. **114**, 699 (2021).
- 45. K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T. Taniguchi, K. Watanabe, B. J. LeRoy, A. H. MacDonald, and E. Tutuc, Proceedings of the National Academy of Sciences **114**(13), 3364 (2017).
- A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kastner, and D. Goldhaber-Gordon, Science **365**(6453), 605 (2019).

- H. Yoo, R. Engelke, S. Carr et al. (Collaboration), Nat. Mater. 18(5), 448 (2019).
- T. Wolf, J. L. Lado, G. Blatter, and O. Zilberberg, Phys. Rev. Lett. **123**(9), 096802 (2019).
- X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A.H. MacDonald, and D.K. Efetov, Nature 574, 653 (2019).
- Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018).
- M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363, 1059 (2019).
- Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).
- L. Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
- V.S. Stolyarov, S. Pons, S. Vlaic, S.V. Remizov, D.S. Shapiro, C. Brun, S.I. Bozhko, T. Cren, T.V. Menshchikova, E.V. Chulkov, W.V. Pogosov, Y.E. Lozovik, and D. Roditchev, J. Phys. Chem. Lett. 12, 9068 (2021).
- A. Kudriashov, I. Babich, R.A. Hovhannisyan, A.G. Shishkin, S.N. Kozlov, A. Fedorov, D. V. Vyalikh, E. Khestanova, M. Y. Kupriyanov, and V.S. Stolyarov, Adv. Funct. Mater. **32**, 2209853 (2022).
- M. M. Otrokov, T. V. Menshchikova, I. P. Rusinov, M. G. Vergniory, V. M. Kuznetsov, and E. V. Chulkov, JETP Lett. 105, 297 (2017).
- 57. J. Henk, M. Flieger, I.V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. **109**, 076801 (2012).
- L.-X. Wang, Y. Yan, L. Zhang, Z.-M. Liao, H.-C. Wu, and D.-P. Yu, Nanoscale 7(40), 16687 (2015).
- T. V. Menshchikova, M. M. Otrokov, S. S. Tsirkin, D. A. Samorokov, V. V. Bebneva, A. Ernst, V. M. Kuznetsov, and E. V. Chulkov, Nano Lett. 13, 6064 (2013).
- S. Lisi, X. Lu, T. Benschop et al. (Collaboration), Nature Phys. 17(2), 189 (2021).
- M. I. B. Utama, R. J. Koch, K. Lee et al. (Collaboration), Nature Phys. 17(2), 184 (2021).
- D. Pierucci, H. Sediri, M. Hajlaoui, J.-C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M. G. Silly, G. Ferro, V. Soulière, M. Marangolo, F. Sirotti, F. Mauri, and A. Ouerghi, ACS Nano 9(5), 5432 (2015).
- D. Marchenko, D. Evtushinsky, E. Golias, A. Varykhalov, T. Seyller, and O. Rader, Sci. Adv. 4(11), eaau0059 (2018).
- H. Henck, J. Avila, Z. Ben Aziza et al. (Collaboration), Phys. Rev. B 97, 245421 (2018).

Письма в ЖЭТФ том 117 вып. 3-4 2023

- 65. P.E. Blöchl, Phys. Rev. B **50**(24), 17953 (1994).
- 66. G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558 (1993).
- 67. G. Kresse and J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996).
- G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6(1), 15 (1996).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 4 (1996).
- 70. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. **132**(15), 154104 (2010).
- V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44(3), 943 (1991).
- S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, Phys. Rev. B 57(3), 1505 (1998).
- M. Cococcioni and S. De Gironcoli, Phys. Rev. B 71(3), 035105 (2005).