Влияние беспорядка на магнитотранспорт в полупроводниковом искусственном графене

 $O. A. Ткаченко^{+1}$, $B. A. Ткаченко^{+*}$, $Д. Г. Бакшеев^*$, $O. П. Сушков^{\times}$

⁺Институт физики полупроводников им. А.В.Ржанова Сибирского отделения РАН, 630090 Новосибирск, Россия

*Новосибирский государственный университет, 630090 Новосибирск, Россия

[×]School of Physics, University of New South Wales, 2052 Sydney, Australia

Поступила в редакцию 15 ноября 2022 г. После переработки 1 декабря 2022 г. Принята к публикации 8 декабря 2022 г.

В рамках формализма Ландауэра–Бьюттикера промоделирован магнитотранспорт в мезоскопических образцах с полупроводниковым искусственным графеном. Модельные четырехтерминальные системы в высокоподвижном двумерном электронном газе имеют форму квадрата размером $3 \div 5$ мкм, который заполнен короткопериодной (120 нм) слабо разупорядоченной треугольной решеткой антиточек при амплитуде модуляции электростатического потенциала, сравнимой с энергией Ферми. Обнаружено, что при концентрациях носителей в решетке ниже точки Дирака $n < n_{1D}$ в холловском сопротивлении $R_{xy}(B)$ в диапазоне магнитных полей $B = 10 \div 50$ мTл возникает плато дырочного типа $R_{xy} = -R_0$, а при $n > n_{1D}$ плато электронного типа $R_{xy} = R_0$, где $R_0 = h/2e^2 = 12.9$ кОм. С усилением беспорядка плато разрушаются, но тип носителей (электроны или дырки) сохраняется. При низких магнитных полях длинноволновой беспорядок подавляет плато квантованных сопротивлений гораздо эффективнее, чем коротковолновый.

DOI: 10.31857/S1234567823030084, EDN: oxgchz

В последние годы достигнут значительный прогресс в формировании полупроводниковых решеток с периодом 70-130 нм в высокоподвижном двумерном электронном газе (ДЭГ). Были минимизированы ошибки технологии, которые могут разрушать энергетический спектр решеток. Особое внимание уделяется разработке и тестированию устройств с треугольной решеткой антиточек [1], которые позволят создавать и изучать полупроводниковый искусственный графен. В таких устройствах с нелегированной гетероструктурой GaAs/AlGaAs предусмотрено два затвора, разделенных диэлектриком [2]. Нижний затвор пронизан решеткой отверстий, он лежит на полупроводнике и вытягивает электроны из боковых контактов в рабочий слой GaAs. Верхний затвор, отделенный от нижнего тонким слоем диэлектрика, входит в область отверстий и создает в ДЭГ под отверстиями области обеднения - барьеры конечной высоты (антиточки). В результате в плоскости ДЭГ возникает плавный синусоподобный потенциал с гексагональной симметрией. Различия в диаметрах, в форме, в положении отверстий нижнего затвора и цилиндров верхнего затвора, входящих в отверстия, вносят длинноволновый беспорядок в потенциал решетки [2]. Размер типичных флуктуаций такого беспорядка охватывает несколько периодов решетки.

В работе [3] для ряда атомарных решеток, включая гексагональную и квадратную, методом сильной связи было предсказано поведение холловской проводимости $\sigma_{xy}(E)$ для энергий в щелях минизон Ландау. Рассматривался случай бесконечной периодической решетки в перпендикулярном магнитном поле, отношение магнитного потока через элементарную ячейку ϕ к кванту потока $\phi_0 = h/e$ выбиралось равным рациональной дроби $\phi/\phi_0 = p/q$. Аномальное поведение холловской проводимости в гексагональной решетке вблизи точки Дирака σ_{xy} = $= \pm (2N+1)2e^2/h$, где $N = 0, 1, 2, \dots$ (здесь учтено вырождение по спину) было предсказано в еще работе [4] до экспериментального наблюдения аномального квантового эффекта Холла (АКЭХ) в графене. Авторы работы [3] показали, что АКЭХ существует вплоть до некоторых энергий для целого класса решеток. Эти энергии связаны с сингулярностями Ван Хова и расположены по обе стороны от точки Дирака. Было так же выяснено, что при переходе через сингулярности Ван Хова проводимость претерпевает гигантский скачок, при этом знак проводимости

¹⁾e-mail: otkach@isp.nsc.ru

меняется. Таким образом, в работе [3] было показано, что холловская проводимость, ниже первой точки Ван Хова, положительная, а выше второй точки Ван Хова – отринательная и меняется в этих областях по энергии с шагом $2e^2/h$ в соответствии с обычным квантовым эффектом Холла (КЭХ). Пример, демонстрирующий зависимость $\sigma_{xy}(E)$, был дан для "низкого" магнитного потока $\phi = \phi_0/31$, для графена соответствующая напряженность магнитного поля равна B = 2538 Тл. Для искусственного графена с периодом 120 нм магнитное поле, отвечающее потоку $\phi/\phi_0 = 1/31$, очень мало B = 0.011 Тл (магнитные поля отличаются в квадрат отношения постоянных решетки). Результаты работы [3] не могут быть буквально перенесены на искусственный полупроводниковый графен, поскольку это совершенно другая электронная система с плавным эффективным потенциалом и существенным беспорядком.

Ранее мы моделировали треугольную решетку антиточек конечных размеров (период 100 нм, беспорядок отсутствовал) и обнаружили, что АКЭХ возникает в окрестности точек Дирака в перпендикулярном магнитном поле несколько миллитесла [5], причем ниже точки Дирака ток переносится дырками, а выше точки Дирака – электронами. Этот результат в основном сохраняется при коротковолновом беспорядке, который позволяет подавить интерференционные осцилляции, связанные с размером образца [6]. Оставалось неясным, будет ли длинноволновой беспорядок разрушать квантование холловского сопротивления R_{xy} и может ли сохраняться дырочный и электронный тип проводимости вблизи точек Дирака при подавленных значениях $R_{xy} \ll R_0 = h/2e^2 =$ $= 12.9 \, \mathrm{KOm}.$

В настоящей работе мы сопоставляем влияние коротко- и длинноволнового беспорядка на квантовый транспорт через гексагональную решетку. Мы вычисляем холловские сопротивления R_{xy} для устройства в четырехтерминальной схеме измерений при фиксированной модуляции периодического потенциала и заданном уровне беспорядка. Мы показываем, что коротковолновый беспорядок разумных амплитуд не приводит к разрушению КЭХ, в то время как длинноволновой может существенно уменьшать значения холловского сопротивления, не изменяя его знака.

В расчетах мы используем задание потенциала по аналитической формуле [7]: $U(\mathbf{r}) = V_0 \sum \cos(\mathbf{g_i} \cdot \mathbf{r})$, где V_0 определяет амплитуду модуляции потенциала. Векторы обратной решетки определяются как

$$\mathbf{g}_1 = g_0(1, 1/\sqrt{3}),$$

$$\mathbf{g}_2 = g_0(0, 2/\sqrt{3}),$$

 $\mathbf{g}_3 = \mathbf{g}_1 - \mathbf{g}_2 = g_0(1, -1/\sqrt{3}).$

Здесь $g_0 = 2\pi/L$, а L – период решетки. Зонные спектры идеальной гексагональной решетки для разных значений V_0 обсуждались в работе [2]. Было показано, что спектр зависит только от безразмерной амплитуды модуляции потенциала $w_0 = 0.5V_0/E_0$, где характерная энергия $E_0 = \frac{8\pi^2}{9} \frac{\hbar^2}{m^*L^2}$. Для эффективной массы в GaAs $m^* = 0.067m_e$ и периода решетки L = 120 нм получаем $E_0 = 0.693$ мэВ.

На рисунке 1 показаны нижние минизоны, расчитанные для решетки с модуляцией $w_0 = 0.25$, пол-

Рис. 1. (Цветной онлайн) Нижние минизоны для идеальной решетки с периодом L = 120 нм и модуляцией $w_0 = 0.25$. Стрелки VH1 и VH2 указывают на положения по энергии первой и второй сингулярностей Ван Хова, стрелка 1D – на первую точку Дирака

ная амплитуда периодического потенциала от минимального до максимального значения равна $9w_0E_0 \approx$ ≈ 1.56 мэВ. Это довольно низкая модуляция, при которой третья минизона перекрывается со второй. Тем не менее, минизонные особенности уже четко проявляются в холловском сопротивлении. Две нижние минизоны пересекаются в точке Дирака с энергией $E_{1D} = 0.49$ мэВ. Первая и вторая сингулярности Ван Хова отвечают энергиям $E_{VH1} = 0.32$ мэВ, $E_{VH2} = 0.57 \text{ мэB}$ – это точки, в которых меняется кривизна закона дисперсии. Концентрация частиц в первой точке Дирака отвечает заполнению первой минизоны двумя электронами: $n_{1D} = 2/(\sqrt{3}L^2/2) =$ $= 1.6 \cdot 10^{10} \,\mathrm{cm}^{-2}$. С ростом модуляции третья зона поднимается и при $w_0 \ge 0.75$ между второй и третьей зонами возникает щель запрещенных энергий.

Беспорядок в расчетах задавался функцией $V_d(\mathbf{r})$, которая прибавляется к периодическому потенциалу $U(\mathbf{r})$. Это позволяет независимо менять амплитуду модуляции и беспорядка. Поскольку потенциал численно определялся на дискретной квадратной сетке с шагом $h_x = h_y = 8$ нм, проще всего было ввести беспорядок как случайную добавку в каждом сайте (*i*, *j*) вычислительной сетки. Реализация беспорядка V_d определялась последовательностью случайных чисел $\delta_{i,j}$ в диапазоне от -0.5 до 0.5: $V_d(\mathbf{r}_{i,j}) = \delta_{i,j} \cdot V_r$, где коэффициент Vr задавал амплитуду беспорядка. Такой беспорядок (коротковолновый или локальный) вызывает рассеяние даже в сравнительно сильных магнитных полях 1-2 Тл, при которых магнитная длина остается больше шага сетки. Другой тип беспорядка ближе к реальному. Способ его задания вытекает из нашего опыта расчетов трехмерной электростатики структур с треугольной решеткой [2]. Из этих расчетов следует, что при учете разброса диаметров отверстий в нижнем затворе самые сильные отклонения потенциала от идеальной формы возникают в области антиточек, в то время как между антиточками в каналах, заполненных электронами, потенциал меняется гораздо слабее за счет самоэкранировки. Поэтому разумно задать беспорядок этого типа в виде суммы гауссовых функций случайной амплитуды $V_r \cdot \Sigma_i \delta_i \exp(-(\mathbf{r} - \mathbf{r}_i)^2 / \sigma^2)$, центрированных в вершинах \mathbf{r}_i треугольников гексагональной решетки. Для масштабирования беспорядка вводится общий множитель V_r перед суммой, δ_i – случайные числа в диапазоне от -0.5 до 0.5. Полуширина колокола $\sigma = 45$ нм выбрана близкой к расстоянию от затвора до плоскости с ДЭГ в моделируемой структуре. На рисунке 2 показаны фрагменты (квадратик размером 1 мкм) карты потенциала решетки с модуляцией w₀ = 0.25 для двух типов беспорядка с одинаковой амплитудой V_r = 2 мэВ, где желто-красным цветом изображены горбы потенциала (антиточки), а синим каналы между ними. Видно, что при задании беспорядка гауссовыми функциями в потенциале возникают "хребты" и "ущелья", которые охватывают группу периодов, в то время как при сайтовом беспорядке потенциал на соседних периодах в среднем не меняется.

Задача рассеяния электронов в модельном квадратном образце решается в рамках пакета KWANT [8], предназначенного для расчетов многотерминального квантового транспорта. Четырехтерминальные сопротивления восстанавливаются по формулам Бьютиккера – по вычисляемым в системе коэффициентам прохождения между контактами [9]. В моделировании подводящие каналы подходят горизонтально сверху и снизу к боковым сторонам квадрата, на котором задана решетка. Они отмечены серыми вертикальными полосками на правой и левой сторонах образца (рис. 3 и 4). В обсуждаемых расчетах ширины всех четырех каналов были

Рис. 2. (Цветной онлайн) Карты двумерного потенциала решетки с периодом L = 120 нм и модуляцией $w_0 = 0.25$ при длинноволновом (верхняя карта) и локальном (нижняя карта) с амплитудой $V_r = 2$ мэВ. Цветная шкала потенциала в миллиэлектронвольтах. Изолиния (черные колечки на верхней карте) соответствует энергии первой точки Дирака

одинаковые и равны 560 нм. Потенциал в каналах был постоянным и равным минимуму потенциала решетки в отсутствие беспорядка. На рисунках 3 и 4 показано распределение плотности потока частиц с заданной энергией Е, которые инжектируются в решетку через нижний левый канал, рассеиваются на решетке и выходят через два верхних канала и нижний справа. При нулевой температуре энергия Е имеет смысл уровня Ферми. В решетке возможны два типа носителей заряда: электроны и дырки, в магнитном поле их траектории разделяются. На рисунке 3 частицы с энергией E = 0.5 мэВ в магнитном поле $B = 30 \,\mathrm{mTr}$ прижимаются силой Лоренца к нижнему краю решетки (тип проводимости электронный). Достаточно сильный локальный беспорядок $V_r = 3$ мэВ не разрушает краевое состо-

Рис. 3. (Цветной онлайн) Распределение плотности тока J(x, y) для решетки размером 3.6 мкм при $w_0 = 0.25$, E = 0.5 мэВ, B = 0.03 Тл и локальном беспорядке $V_r = 3$ мэВ. Серые вертикальные полосы отмечают места подсоединения четырех горизонтальных каналов. Частицы входят в образец через левый нижний канал, рассеиваются на решетке и могут выйти через левый верхний, правый верхний и правый нижний каналы.

яние, что означает, что холловское сопротивление имеет квантованное значение. На рисунке 4 показан ток для энергии E = 0.8 мэВ в магнитном поле B = 30 мТл. В отсутствие беспорядка (график сверху) видно, что тип носителей дырочный. Поток частиц идет вверх вдоль левой стенки, обходя центр решетки по часовой стрелке. Длинноволновой беспорядок (график снизу) разрушает краевое состояние и перемешивает частицы по всей решетке, при этом сопротивление отрицательное и мало по величине (дырочный тип проводимости доминирует).

Вычисления DoS и сопротивления Холла R_{xy} выполнялись по следующей схеме. Для заданной w_0 при нулевом беспорядке и B = 0 по энергетической зависимости плотности состояний определялось положение точки Дирака (провал между линейным склоном и подъемом DoS(E)) и положение сингулярностей Ван Хова (точки максимумов DoS(E)). Затем при энергиях ниже и выше точки Дирака проводились магнитополевые расчеты сопротивлений и DoS(B) при разных уровнях и типах беспорядка. Заметим, что все зависимости по энергии или магнитному полю сглаживались из-за присутствия сильных интерференционных осцилляций. Усреднение соответствовало эффективной температуре 0.05 К. Модельные системы имели форму квадрата размером $3.6 \div 4.8$ мкм ($30 \div 40$ периодов решетки).

Рис. 4. (Цветной онлайн) Плотность потока J(x, y) для решетки размером 3.6 мкм при $w_0 = 0.25$, E = 0.8 мэВ, B = 0.03 Тл в отсутствие беспорядка $V_r = 0$ (сверху) и при длинноволновом беспорядке $V_r = 2$ мэВ (график снизу). Размеры по осям указаны в микронах

В эксперименте модуляция периодического потенциала решетки, создаваемой электростатически, может сильно уменьшаться при постепенном заселении электронами нижних минизон из-за самоэкранировки. Однако при разных модуляциях $w_0 = 0.25-2$ поведение холловского сопротивления в окрестности первой точки Дирака однотипно из-за похожего закона дисперсии двух нижних подзон [2]. Различия в поведении R_{xy} проявляются при более высоких концентрациях $n > 2n_{1D}$ и более высоких магнитных полях [6]. Ниже все расчеты относятся к решетке с $w_0 = 0.25$.

Рисунок 5 показывает энергетические зависимости холловского сопротивления $R_{xy}(E)$ и плотности состояний DoS(E) для $w_0 = 0.25$ и разных

Рис. 5. (Цветной онлайн) Холловское сопротивление R_{xy} (а) и плотность состояний DoS (b) в зависимости от энергии для $w_0 = 0.25$, B = 25 мТл. Беспорядок длинноволновой. Числа 0, +1, -1 на графике (b) отмечают пики нулевого и плюс/минус первого уровней Ландау-Дирака. Положение точки Дирака совпадает с пиком N = 0, а сингулярности Ван Хова при B = 25 мТл сливаются с пиками $N = \pm 1$

амплитудах V_r длинноволнового беспорядка в магнитном поле $B = 25 \,\mathrm{mTr}$. В отсутствие беспорядка можно видеть квантованные плато сопротивления $R_{xy} = \pm R_0$, разделяющие нулевой уровень Ландау– Дирака и уровни Ландау–Дирака с $N = 0, \pm 1: E_0 =$ = 0.46 мэВ, $E_{-1} = 0.34$ мэВ, $E_{+1} = 0.6$ мэВ. Беспорядок и магнитное поле немного сдвигают точку Дирака и сингулярности Ван Хова по энергии по сравнению со значениями, полученными из закона дисперсии на рис. 1. При низких магнитных полях можно считать, что энергии E_{1D} , E_{VH1} , E_{VH2} совпадают с точками изменения знака холловского сопротивления [3]. В интервале от E = 0.6 мэВ примерно до E = 1.2 мэВ холловское сопротивление снова становится отрицательным, хотя значения сопротивления тут гораздо меньше, чем в окрестности точки Дирака. При $V_r > 1$ мэВ плато $R_{xy} = \pm R_0$ разрушаются. При $V_r = 2$ мэВ величина сопротивления в окрестности точки Дирака сильно подавляется по сравнению с R₀. Там, где было отрицательное плато

 $R_{xy} = -R_0$ в отсутствие беспорядка, сопротивление уменьшилось в разы, но тип проводимости остался дырочным. Электронное плато $R_{xy} = R_0$ выше точки Дирака по энергии превратилось в горб с максимальным значением примерно $R_0/3$. При $V_r = 3$ мэВ возникают дополнительные осцилляции $R_{xy}(E)$ и точка Дирака размывается. При $V_r > 3$ мэВ значения сопротивления становятся маленькими и в основном положительными. Таким образом, при $V_r \leq 2$ мэВ есть две области отрицательных холловских сопротивлений: $E_{VH1} < E < E_{1D}$ и $E_{VH2} < E < 1.2$ мэВ. В плотности состояний DoS(E) при $V_r = 0$ уровни Ландау видны в виде пиков, причем три пика, отвечающие уровням Ландау–Дирака с $N = 0, \pm 1$ шире, чем обычные уровни Ландау, поскольку их вырождение в два раза больше (рис. 5b). Это связано с тем, что вблизи точки Дирака поверхность Ферми является двусвязной (распадается на две долины). Магнитный поток через площадь элементарной ячейки решетки при $B = 25 \,\mathrm{MT}$ л равен $\phi = 0.075 \phi_0$. Соответствующая напряженность магнитного поля в естественном графене относится к недостижимо высоким значениям B = 5925 Тл. При $\phi \approx 0.1 \phi_0$ уровни Ландау-Дирака с $N = \pm 1$ наползают на сингулярности Ван Хова, что согласуется с моделированием естественного графена, см. рис. 5с в работе [3]. Таким образом, поле B = 25 мТл относится к режиму сильных магнитных полей, в котором уровни Ландау–Дирака с более высокими N отсутствуют. При значительном беспорядке области с дырочной и электронной проводимостью перекрываются по энергии, поэтому пики DoS(E) быстро размываются и практически уже не видны при $V_r = 2$ мэВ. Пики DoS(E) ниже и выше сингулярностей Ван Хова можно интерпретировать как уровни Ландау, отстроенные от дна первой минизоны (электронная проводимость) и от макушки второй минизоны (дырочная проводимость).

На рисунке 6 показано влияние длинноволнового беспорядка на магнитополевую зависимость $R_{xy}(B)$ при $w_0 = 0.25$ и E = 0.4 мэВ. Видно, что это влияние очень сильное. Отрицательный наклон R_{xy} в нуле B = 0 свидетельствует о дырочном типе проводимости. При магнитном поле больше $B = 50 \div 55$ мTл сопротивление становится выше нуля и далее, осциллируя, поднимается до $R_{xy} = R_0$. Между плато квантованных значений $R = R_0, R_0/2, R_0/3, R_0/4$ есть глубокие провалы, которые замываются беспорядком.

На рисунке 7 показано влияние размера решетки и типа беспорядка на зависимость $R_{xy}(B)$. Если при коротковолновом беспорядке все плато прописаны очень четко, то при длинноволновом беспорядке пла-

Рис. 6. (Цветной онлайн) Холловское сопротивление $R_{xy}(B)$ при разных амплитудах беспорядка для $w_0 = 0.25$, E = 0.4 мэВ (ниже E_{1D}). Беспорядок длинноволновой

то при B < 0.05 Тл разрушено, но тип носителей сохраняется: там, где было плато $R_{xy}(B) = -R_0$, знак сопротивления остается отрицательным. Что касается влияния разных реализаций беспорядка, то качественно поведение кривых сопротивления для одного типа беспорядка похожее.

Рис. 7. (Цветной онлайн) Влияние разных реализаций беспорядка и типа беспорядка на зависимость $R_{xy}(B)$ при $w_0 = 0.25$, E = 0.4 мэВ, $V_r = 1.5$ мэВ для решеток, заданных на квадрате со стороной 3.6 и 4.8 мкм. Кривые с длинноволновым беспорядком отмечены буквой A (беспорядок в антиточках), с коротковолновым (беспорядок в сайтах) – буквой S

Рисунке 8 показывает эволюцию $R_{xy}(B)$ при постепенном изменении энергии электронов. Синим цветом отмечены кривые $R_{xy}(B)$ с положительным наклоном в нуле, а красные — с отрицательным. Видно, что наклон $R_{xy}(B)$ в нуле меняет знак четыре раза: в сингулярностях Ван Хова, в точке Дирака и при энергии выше E = 1.3 мэВ, где минизоны накладываются друг на друга и доминирует электронный тип проводимости. Вторая область дырочной проводимости шире первой: она идет от 0 почти до

Письма в ЖЭТФ том 117 вып. 3-4 2023

B = 100 мТл. Заметим, что по наклону $R_{xy}(B)$ в нуле уже нельзя определять концентрацию в образце.

Рис. 8. (Цветной онлайн) Холловское сопротивление для $w_0 = 0.25$ с длинноволновым беспорядком $V_r = 2$ мэВ при фиксированных энергиях, указанных числами. Кривые $R_{xy}(B)$ сдвинуты по вертикали с шагом 0.5

Таким образом, мы показали, что при изменении энергии (концентрации) электронов в решетке или напряженности магнитного поля холловское сопротивление меняет знак. Такое чередование типов носителей связано с минизонным спектром решетки. Выяснено, что в низких магнитных полях коротковолновый беспорядок практически не разрушает краевые состояния решетки, в то время как длинноволновой беспорядок размешивает частицы по всей структуре и подавляет значения холловского сопротивления по сравнению с квантованными значениями в отсутствие беспорядка, сохраняя при этом тип носителей.

Данная работа выполнена с использованием ресурсов Межведомственного суперкомпьютерного центра РАН и при поддержке Российского научного фонда, грант # 19-72-30023. Авторы благодарны за стимулирующее обсуждение коллегам, прежде всего, О. Клочану, Д. К. Ванг, З. Е. Криксу, А. Р. Гамильтону из Университета Нового Южного Уэльса, Австралия.

- D. Q. Wang, D. Reuter, A. D. Wieck, A. R. Hamilton, and O. Klochan, Appl. Phys. Lett. **117**, 032102 (2020).
- O. A. Tkachenko, V. A. Tkachenko, I. S. Terekhov, and O. P. Sushkov, 2D Mater. 2, 014010 (2015).
- Y. Hatsugai, T. Fukui, and H. Aoki, Phys. Rev. B 74, 205414 (2006).

- 4. Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
- O. A. Tkachenko and V. A. Tkachenko, JETP Lett. 99, 204 (2014).
- O. A. Tkachenko, V. A. Tkachenko, D. G. Baksheev, and O. P. Sushkov, JETP Lett. **116**, 616 (2022).
- L. Nádvorník, M. Orlita, N.A. Goncharuk, L. Smrčka,
 V. Novák, V. Jurka, K. Hruška, Z. Výborný,
 Z. R. Wasilewski, M. Potemski, and K. Výborný, New
 J. Phys. 14, 053002 (2012).
- C. W. Groth, M. Wimmer, A.R. Akhmerov, and X. Waintal, New J. Phys. 16, 063065 (2014).
- 9. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).