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The old problem of Mott (metal-insulator) transition
is still of interest and importance. Usually this transi-
tion occurs in antiferromagnetic phase (Slater scenario),
but the situation changes for frustrated systems: only
the paramagnetic metallic and insulator state are in-
volved, a spin liquid being formed [1]. The transition
into insulator state is related to correlation Hubbard
splitting (the Mott scenario). In the Mott state the gap
in the spectrum is essentially the charge gap determined
by boson excitation branch. Therefore the electrons be-
come fractionalized: the spin degrees of freedoms are
determined by neutral fermions (spinons), and charge
ones by bosons. The corresponding slave-boson repre-
sentation was first introduced by Anderson, see [2]. The
deconfined spin-liquid state involved includes fractional-
ization and long-range many-particle quantum entangle-
ment [3]. Generally, description of the correlated para-
magnetic phase, which may have a complicated internal
structure, is an important problem.

In fact, boson and fermion are coupled by a gauge
field, so that the problem of confinement occurs [2].
The transition into the metallic confinement state is
described as a Bose condensation, the electron Green’s
function acquiring the finite residue. On the other hand,
in the insulator state the bosons have a gap, so that the
spectrum is incoherent (the electron Green’s function is
a convolution of boson and fermion ones) and includes
Hubbard’s bands.

New theoretical developments provided a topolog-
ical point of view for the Mott transition, since spin
liquid possesses topological order (see review in [3]).
Phase transitions in frustrated systems can be treated in
terms of topological excitations (instantons, monopoles,
visons, vortices) which play a crucial role for confine-
ment.

A useful analogy is given by the charged Bose lig-
uid in a magnetic field where one has to take into ac-
count the gauge invariance. Here, the magnetic field
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penetrates into the sample as vortex filaments which
carry unit flux quanta and can originate and terminate
at instantons and anti-instantons [4].

In a pure gauge model, the magnetic monopoles (in-
stantons) — the point singularities of the gauge field —
occur, which are non-local excitations of the system, in-
teracting according to the Coulomb law. In the case of
compact field, a confinement situation can occur ow-
ing to the monopoles. With adding a material field the
Higgs effect (occurrence of the gauge boson mass) can
result in formation of a new “Coulomb” phase which is
essentially a deconfined phase.

The pure gauge model in the space-time dimension
d = 241 is always confining at arbitrarily small coupling
constant g owing to occurrence of instantons which pro-
vide tunneling events. In the presence of a material field,
the situation can change due to the Higgs phenomenon.
The phase diagram for d = 3+1 case contains the Higgs-
confinement phase and Coulomb (free charge) phase [4].
A crossover between the Higgs and confinement states
is also possible. In the Coulomb phase, the gauge field
is deconfining and massless, and the Bose field remains
disordered.

For d = 2 + 1 we have only the confinement phase
where the gauge field is massive due to instantons. In
the strong coupling (large g) limit the gauge field does
not have its own dynamics and provides the constraint
of integer boson occupation at each lattice site, resulting
in an insulator state. Therefore the confinement phase
may be understood as a Bose Mott insulator. This Mott
phase turns out to extend to include the entire phase di-
agram up to the line g = 0.

The situation in d = 2 + 1 can change in a gapless
spin liquids with a large number of gapless fermionic
matter fields, e.g., Dirac points [1, 5] where gauge field
can become non-compact.

The Kotliar-Ruckenstein representation (see [6])
uses the Bose operators e;, p;», d; and Fermi operators
fia:

Cjcr - fiTch'ja’ chr = gQiU(p:iraei + djpifg)glia; (1)
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with the constraints

ijgpia"l_elei"'djdi =1, fl, fie = plopic+dldi. (2)

The critical value for the Mott transition in the
Brinkman-Rice approximation reads U. = 8¢ where
e =2 ‘ ffoo dwwp(w)‘ the average non-interacting en-
ergy, p(w) the bare density of electron states.

Similar to [7], the calculation of the boson Green’s
function yields the spectrum

waa = 5 [EUC ~ (~1)* TP + U0, —15@)). ()

Here ¢ = (1 —U,./U)'/2, we have taken into account the
boson self-energy

(q) = *QZtqunkm Nko = <fligfka>- (4)
ko

The dispersion of bosons is influenced by details
of fermion spectrum which is determined by the f-
system state. Spin degrees of freedom can be treated
separately with the Heisenberg Hamiltonian in the f-
pseudofermion representation. Under some conditions,
one can expect formation of a spin-liquid state where
excitation are essentially spinons — neutral fermions.

The mean-field picture of spinon spectrum FEjy can
be stabilized in the case of a non-compact gauge field or
by gapless Fermi excitations. In the insulator state this
spectrum is not influenced by bosons, various spin-liquid
phases being obtained [2].

In the absence of considerable k-dependence of ny,
(a localized spin phase without fermion hopping),
tends to zero. However, for a spin liquid we have a sharp
Fermi surface. Indeed, for Mott insulators the spinon
Fermi surface is expected to be preserved even in the in-
sulating phase, so that the Luttinger theorem remains
valid. Although, generally speaking, the spinon spec-
trum form differs from bare electron one, for ¢ = 0 we
still have X(0) = U./4 since the spinon band is half-
filled and the chemical potential (the position of the
Fermi energy) is fixed.

Thus the spectrum picture in the insulating state is
considerably influenced by the spinon spin-liquid spec-
trum and hidden Fermi surface. This interpretation of
spectrum is different from that in [7] where the limit of
vanishing renormalized electron bandwidth (i.e., in the
Mott phase where the averages e, d — 0) is treated in a
Gutzwiller-type approach.

In the nearest-neighbor approximation, after passing
in (4) to the coordinate representation one can see that
the spectrum of spinons and correction to holon spec-
trum differ, roughly speaking, only in the replacement

of J by t (X(q) x E(q)). In particular, we have for a
square lattice

¥(q) = Ue(cos gy + cosqy)/8,
%(q) = +Ue/cos? g, + cos? g, /(4V/2) (5)

for the the uniform RVB phase and w-flux phase (which
contains Dirac points), respectively.
In the large-U limit we have

Waq = const — (—1)*%(q)/C¢.

It is important that a characteristic scale of spinon en-
ergies is small in comparison with that of electron ones,
so that the spinon Fermi surface is strongly tempera-
ture dependent; this situation is somewhat similar to
the case of magnetic order.

The observable electron Green’s function is obtained
as a convolution of the boson and spinon Green’s func-
tions. Then we obtain the upper and lower Hubbard
subbands with energies near 0 and U and the width of
order of bare bandwidth, the gap between them vanish-
ing at the transition point U — U,. At some points in
the Brillouin zone the interaction with the gauge field
owing to constraints can play an important role [2]. The
expressions for the Green’s functions can be used to cal-
culate the optical conductivity, cf. [7].

Although most theoretical investigations are per-
formed in d = 2 + 1, spin- liquid states exists in some
three-dimensional systems, e.g., pyrochlores. Even if an
instability with respect to magnetic ordering or super-
conductivity occurs in the ground state, a spin-liquid-
like state can occur in an intermediate temperature
regime, especially in frustrated systems.

The author is grateful to Yu. N. Skryabin for numer-
ous fruitful discussions.
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