Определение сверхпроводящего параметра порядка слабо недодопированных пниктидов BaFe_{1.92}Ni_{0.08}As₂ двумя взаимодополняющими методами¹⁾

А. В. Садаков⁺, А. В. Муратов⁺, С. А. Кузьмичев^{*+}, О. А. Соболевский⁺, Б. И. Массалимов⁺, А. Р. Прищепа⁺, В. М. Михайлов⁺, К. С. Перваков⁺, В. А. Власенко⁺, Т. Е. Кузьмичева^{+ 2)}

+ Физический институт им. П. Н. Лебедева РАН, 119991 Москва, Россия

 $^* \Phi$ изический факультет, МГУ имени М. В. Ломоносова, 11999
1 Москва, Россия

Поступила в редакцию 29 июля 2022 г. После переработки 28 сентября 2022 г. Принята к публикации 28 сентября 2022 г.

В работе определена структура сверхпроводящего параметра порядка пниктидов BaFe_{1.92}Ni_{0.08}As₂ слабо недодопированного состава с $T_c \approx 18.2$ К. С помощью спектроскопии эффекта некогерентных многократных андреевских отражений напрямую определены величины двух микроскопических сверхпроводящих параметров порядка – малой сверхпроводящей щели $\Delta_S(0)$ и, предположительно, экстремумов большой щели с анизотропией в *ab*-плоскости $\Delta_L^{out}(0)$ и $\Delta_L^{in}(0)$ при $T \ll T_c$, а также их температурные зависимости. Показано, что полученная температурная зависимость первого критического поля $H_{c1}(T)$ может быть описана в рамках двухзонного приближения как так называемой альфа-моделью (с использованием экспериментальных величин $\Delta_S(0)$, $\Delta_L^{out}(0)$ и $\Delta_L^{in}(0)$), так и с учетом полученных методом многократных андреевских отражений спектроскопии температурных зависимостей $\Delta_S(T)$, $\Delta_L^{out,in}(T)$ в предположении достаточно сильной анизотропии малой сверхпроводящей щели, где экспериментальная величина $\Delta_S(0)$ взята в качестве максимального значения ее углового распределения.

DOI: 10.31857/S1234567822220074, EDN: lynkzl

1. Введение. Сверхпроводящие пниктиды ВаFe₂As₂ семейства Ва-122 имеют слоистую кристаллическую структуру и при частичном замещении Fe_{2-x}Ni_x демонстрируют умеренные критические температуры до $T_c \approx 21$ К в области оптимального допирования при x = 0.1 [1]. На поверхности Ферми с помощью фотоэмиссионной спектроскопии с угловым разрешением (ARPES) обнаружены вложенные дырочные цилиндры вокруг Г-точки зоны Бриллюэна и электронные цилиндры вокруг M-точки, гофрированные вдоль k_z -направления [2].

Хотя исследования пниктидов $BaFe_{2-x}Ni_xAs_2$ (BFNA) в сверхпроводящем состоянии с помощью ARPES не проводились, можно сказать, что характерной особенностью пниктидов семейства Ba-122 в целом является анизотропия сверхпроводящих щелей в импульсном пространстве, наблюдаемая в ARPES-экспериментах [3, 4] и рассматриваемая теоретически [5, 6]. Расчеты щелевой структуры для семейства Ba-122 [5, 6] показали существование анизотропных сверхпроводящих щелей как в рамках спин-флуктуационного (s^{\pm}) , так и орбитальнофлуктуационного (s^{++}) подхода, причем комбинация этих типов взаимодействий [6] дает возможность получить большое разнообразие щелевых структур, в том числе с "нодальным" параметром порядка (имеющим точки нулей в *k*-пространстве). Новый комплексный метод, предложенный в данной работе, позволил нам получить надежные экспериментальные данные об анизотропии сверхпроводящих щелей в BFNA.

Экспериментальные исследования щелевой структуры BFNA (с частичным замещением никелем) немногочисленны и проведены, в основном, на монокристаллах оптимально допированного состава x = 0.1. Данные о количестве и величинах сверхпроводящих параметров порядка, полученные локальными, объемными и поверхностными методами [7–13], плохо согласуются: например, характеристическое отношение для большой сверхпроводящей щели $2\Delta_L(0)/k_BT_c \approx 3.7 - 13$, т.е. варьируется в 3.5 раза. Противоречивость имеющихся данных [7–13] также ставит вопрос применимости отдельных экспериментальных методов к исследованию свойств неклассических многозонных сверхпроводников с анизотропными параметрами порядка.

 $^{^{1)}\}mathrm{Cm.}$ дополнительный материал к данной статье на сайте нашего журнала www.jetpletters.ac.ru

²⁾e-mail: kuzmichevate@lebedev.ru

В недодопированной области фазовой диаграммы можно ожидать изменение щелевой структуры (по сравнению с остальными областями) из-за влияния антиферромагнитной и нематической фаз. Однако исследования сверхпроводящих параметров порядка в BFNA недодопированных составов с x < 0.09 до сих пор не были проведены. В данной работе предложен комплексный многозонный подход методами спектроскопии эффекта некогерентных многократных андреевских отражений (МАО) и измерения первого критического поля $H_{c1}(T)$, позволяющий получить более надежные данные о щелевой структуре анизотропных сверхпроводников. В рамках этого подхода впервые определена структура сверхпроводящего параметра порядка пниктидов BaFe_{1.92}Ni_{0.08}As₂ слабо недодопированного состава: величины, температурные зависимости и характеристические отношения двух сверхпроводящих щелей, оценена умеренная анизотропия $A_L \approx 30\,\%$ большой сверхпроводящей щели, сделан вывод о сильной анизотропии малой щели $A_S \gtrsim 50-100$ %. Обсуждаются сходства и различия щелевой структуры пниктидов BFNA с разной степенью допирования.

2. Детали эксперимента. Крупные монокристаллы BaFe_{1.92}Ni_{0.08}As₂ размером до 1 см были выращены методом "раствор в расплаве". Характеризация методами рентгеновской дифракции, элементного анализа, электронной микроскопии, резистивных и магнитных измерений показали наличие единственной сверхпроводящей фазы с $T_c \approx 18.5$ К и высокую степень однородности кристаллов. Детали процесса синтеза и характеризации приведены в [14–16], а также в разделе II Дополнительных материалов.

Планарные механически регулируемые наноконтакты типа сверхпроводник – тонкий нормальный металл – сверхпроводник (SnS) с направлением протекания тока вдоль оси с создавались в монокристаллах BFNA с помощью техники "break-junction" [17]. Типичные вольтамперные характеристики (ВАХ) таких контактов приведены на рис. 1а, температурная зависимость сопротивления вблизи T_c для выколотой из монокристалла пластинки с размерами $4 \times 2 \times 0.2$ мм приведена на рис. 2 (серые кружки, правая ось). Ширина резистивного перехода составляет примерно 1.1 К. Конструкция измерительного столика и детали эксперимента с образцами слоистых соединений, преимущества и недостатки метода подробно описаны в обзоре [18]. Физическая модель контакта схематически приведена на рис. 1 в [19]. Кратко отметим, что регулируемым в эксперименте параметром туннельного контакта в технике

Рис. 1. (Цветной онлайн) Эволюция ВАХ (а) и dI(V)/dV-спектров (b) SnS-контакта с $T_c \approx 18.2\,{\rm K}$ с температурой. Нормальная проводимость контакта $G_N(T, eV > 2\Delta) \approx \text{const};$ для удобства кривые (кроме черной сплошной и штриховой линии) сдвинуты по вертикали на величину c(T), штриховая линия - dI(V)/dV при 19.9 К. Вертикальными линиями при 4.2К отмечен фундаментальный минимум (дублет, $n_L = 1$) от большой сверхпроводящей щели $\Delta_L \approx$ $\approx 3.2 - 4.5$ мэВ (значения соответствуют величине предположительной анизотропии), синими штрихами отдельно показаны первая и вторая субгармоники $n_L^{\rm out} =$ = 1, 2 от верхнего экстремума Δ_L^{out} . Аппроксимация формы дублета $n_L = 1$ в рамках подхода [25] приведена фиолетовой сплошной линией. Стрелками показаны андреевские минимумы $(n_S = 1, 2)$ от малой щели $\Delta_S \approx 1.6$ мэВ

планарного break-junction является площадь (в *ab*плоскости) и, соответственно, нормальное сопротивление R_N , а не толщина и прозрачность области слабой связи (зазора; см. рис. 12, 16 в [18], а также раздел II Дополнительных материалов).

Ниже T_c в SnS-контакте реализуется эффект многократных андреевских отражений (MAO). При высокой прозрачности NS-границ (барьерный параметр $Z \lesssim 0.3$) некогерентный андреевский транспорт вызывает на BAX SnS-контакта избыточный ток (относительно нормальной BAX выше T_c) во всем диапазоне смещений eV. На спектре при $eV \to 0$ динамическая проводимость повышена в разы относительно

Рис. 2. (Цветной онлайн) Температурные зависимости экстремумов большой сверхпроводящей щели $\Delta_L^{\text{in, out}}(T)$ (кружки), ее эффективной величины (открытые кружки) и максимального значения в угловом распределении малой щели $\Delta_S(T)$ (треугольники) по данным рис. 1. Штрихпунктирная линия – однозонная БКШ-образная функция, серыми кружками показан резистивный сверхпроводящий переход объемного монокристалла BaFe_{1.92}Ni_{0.08}As₂. На вставках приведены температурная зависимость предположительной анизотропии большой щели $A(T) \equiv 100 \% \cdot [1 - \Delta_L^{\rm in} / \Delta_L^{\rm out}]$ (квадраты) и предполагаемое схематическое угловое распределение $\Delta_L(\theta)$ в $k_x k_y$ -плоскости. На нижней панели показано отношение большой и малой сверхпроводящих щелей $\Delta_L^{\text{out}}(T)/\Delta_S(T)$ (звезды) и положений первой и второй субгармоник V_1/V_2 от Δ_L^{out} (открытые кружки), показанных на рис. 1b синими штрихами и метками $n_L^{\text{out}} = 1, 2$

проводимости G_N SnS-контакта в нормальном состоянии (так называемый пьедестал), при этом сверхтоковая ветвь отсутствует [20, 21]. Также возникает серия минимумов субгармонической щелевой структуры (СГС), положение которых V_n напрямую определяется величиной сверхпроводящей щели Δ *при любых температурах* вплоть до T_c [20–24]:

$$|eV_n(T)| = 2\Delta(T)/n, \quad n = 1, 2, \dots$$
 (1)

В планарном SnS-контакте число n^* наблюдаемых минимумов СГС зависит от отношения размера контакта d_c и характерной длины неупругого рассеяния l_c в *с*-направлении [19, 21]: $n^* \approx l_c/d_c$. Для многощелевого сверхпроводника на dI(V)/dV-спектре будут присутствовать СГС от каждой щели.

Влияние углового распределения $\Delta(\theta)$ в k-пространстве на форму андреевских минимумов

в рамках подхода [25] показано на рис. 4 в [18]. Гипотетически, если для изотропной щели на dI(V)/dV ожидаются резкие интенсивные минимумы СГС, то подавление амплитулы СГС происходит в случае параметра порядка, имеющего точки нулей ("ноды"). Для щели с расширенной s-волновой симметрией в ab-плоскости без нодов ожидаются дублетные минимумы СГС, ширина которых определяется максимальной Δ^{out} и минимальной Δ^{in} энергиями связи куперовских пар в *k*-пространстве. Степень анизотропии далее определена как $A \equiv 100\% \cdot [1 - \Delta^{\text{in}}/\Delta^{\text{out}}]$. Эффективное значение анизотропной щели при $T \ll T_c$ оценим в рамках формализма [25], исходя из формы дублета как $\Delta^{\text{eff}} \equiv \frac{\sum_{\theta=0}^{\pi/2} \Delta(\theta) \cdot H(2\Delta(\theta))}{\sum_{\theta=0}^{\pi/2} H(2\Delta(\theta))}$, где θ – угол в $k_x k_y$ -плоскости, $H(eV) = G(eV, 4.2 \text{ K}) - G_N(eV, T_c)$ – амплитуда деталей протяженной андреевской особенности n = 1.

В планарном SnS-контакте x- и y-компоненты импульса носителей заряда могут сохраняться в случае баллистического транспорта в *ab*-плоскости, т.е. если длина свободного пробега $l_{\rm ab}^{\rm el}$ превышает $d_{\rm ab}$. В то же время, k_z-компонента может не сохраняться из-за "перемешивания" носителей вдоль направления тока. Оценка шарвиновского сопротивления $R_N = \sqrt{8 \rho_{\rm ab} l_{\rm ab} / (3 \pi d_{\rm ab})}$ [26] аналогично [7, 8] позволяет для представленного ниже SnS-контакта с нормальным сопротивлением $R_N \approx 65 \,\mathrm{Om}$ получить $d_{\rm ab} \approx 33$ нм и $l_{\rm ab}^{\rm el}/d_{\rm ab} \approx 2.6$. Таким образом, особенностью исследованных планарных контактов является баллистический транспорт по *ab*-компонентам импульса, в то время как по с-направлению имеет место неупругое рассеяние. Это дает возможность получать информацию об анизотропии сверхпроводящей щели в $k_x k_y$ -плоскости.

Суммируя кратко возможности техники механически регулируемых планарных контактов на микротрещине "break-junction", можно заключить, что метод позволяет локально (в пределах контактной области размером порядка десятков нм) и напрямую определять величины, температурные зависимости и характеристические отношения сверхпроводящих параметров порядка в высоком разрешении, а также оценивать их анизотропию в $k_x k_y$ -плоскости [18].

Одним из надежных способов исследования особенностей макроскопического параметра порядка в сверхпроводниках является анализ температурной зависимости плотности сверхпроводящих носителей: $\rho_{sc}(T) \sim 1/\lambda^2(T)$, где λ – лондоновская глубина проникновения. Эта методика позволяет косвенно определить количество сверхпроводящих щелей, их величины и дать оценку их угловой структуры в импульсном пространстве. Температурная зависимость ρ_{sc} может быть получена из зависимости первого критического поля в соответствии с формулой для сверхпроводников II рода

$$H_{c1}(T) = \phi_0 \left[\ln(\kappa(T)) + 0.5 \right] / \left[4\mu_0 \ \pi \lambda^2(T) \right] \quad (2)$$

в соответствии с предсказаниями теории Гинзбурга-Ландау. Величина первого критического поля определяется из кривых намагниченности. Как известно, до достижения внешним полем величины H_{c1} кривая намагниченности сверхпроводящего образца линейна и ее наклон раве
н $-\frac{1}{4}\pi.$ При достижении внешним полем значения H_{c1} в сверхпроводнике второго рода формируются вихри Абрикосова, которые входят в кристалл, при этом эффективно уменьшают объем сверхпроводящей фазы и приводят к отклонению кривой намагниченности от линейного хода. Существует много способов определения величины *H*_{c1} из кривых намагничивания. В данной работе кривые намагничивания были измерены с помощью микродатчика Холла [27]. В этой методике на датчик Холла размером 50 × 50 мкм кладется образец цилиндрической формы и размером $1 \times 1 \times 0.2$ мм параллельно *аb*-плоскости и измеряется сигнал датчика в зависимости от приложенного по оси с внешнего постоянного магнитного поля. В результат измерений интегрально входит анизотропия лондоновской глубины и, соответственно, концентрации куперовских пар в *ab*-плоскости. Это позволяет двум методам дополнять друг друга, поскольку спектроскопия MAO детектирует анизотропию щели также в *ab*плоскости. Отметим, что влияние краевых дефектов при измерении кривых M(H) изменяет только абсолютную величину $H_{c1}(T)$, в то время как определяемые параметры сверхпроводящего состояния зависят только от формы кривой $H_{c1}(T)/H_{c1}(0)$. Выбор критерия определения H_{c1} из кривых намагничивания также влияет лишь на амплитуду H_{c1} : получаемые нормированные температурные зависимости $H_{c1}(T)/H_{c1}(0)$ подобны друг другу с погрешностью < 2%.

Для описания экспериментальных результатов измерения первого критического поля традиционно применяется так называемая альфа-модель расчета макроскопического параметра порядка изотропного сверхпроводника [28], которая легко расширяется для двухщелевого сверхпроводника [29]:

$$\rho_{sc}(T) = \varphi \rho_{sc1}(T) + (1 - \varphi) \rho_{sc2}(T).$$
(3)

Данная модель описывает нормированную плотность куперовских пар двух *невзаимодействующих*

Письма в ЖЭТФ том 116 вып. 9-10 2022

сверхпроводящих конденсатов с соответствующими весами (температурная зависимость энергии каждой из щелей предполагается БКШ-образной). В свою очередь, нормированная сверхпроводящая плотность связана с критическим полем как

$$\widetilde{\rho}_{sc}(T) \equiv \rho_{sc}(T) / \rho_{sc}(0) = H_{c1}(T) / H_{c1}(0) = = \lambda^2(0) / \lambda^2(T).$$
(4)

В общем виле, с учетом возможной анизотропии обеих щелей данная модель имеет 7 свободных параметров: критическое поле при нулевой температуре $H_{c1}(0)$, критическая температура T_c (единая для обоих конденсатов), величины характеристических отношений сверхпроводящих щелей $2\Delta_L^{\rm out}(0)/k_BT_c$ и $2\Delta_S^{\text{out}}(0)/k_BT_c$ при $T \ll T_c$, степени их анизотропии A_L, A_S (для расчетов взято угловое распределение в импульсном пространстве $\Delta(\theta) = \Delta^{\text{out}} \cdot \left[1 - \frac{A}{2}(1 - \theta)\right]$ $-\cos(4\theta))$], где θ – угол в $k_x k_y$ -плоскости) и весовой вклад одной из эффективных зон φ , что приводит к возможному существованию нескольких решений. При использовании величин $\Delta_L^{\text{in}}(0), \ \Delta_L^{\text{out}}(0)$ и Δ_S , определенных напрямую методом андреевской спектроскопии, а также критической температуры количество свободных параметров может быть уменьшено до трех: $H_{c1}(0)$, весовой вклад зон с малой щелью φ и степень ее анизотропии A_S .

Также в качестве оценки нормированного макроскопического параметра порядка для изотропного сверхпроводника в "грязном" пределе можно взять выражение [30]

$$\widetilde{\rho}_{sc}(T) = \delta(T) \cdot \tanh(\frac{\Delta(T)}{2k_B T}), \tag{5}$$

где $\delta(T) \equiv \Delta(T)/\Delta(0)$. В случае анизотропного в k-пространстве микроскопического параметра порядка $\Delta(\theta)$ необходимо интегрировать выражение 5 по углу θ . Таким образом, температурные зависимости сверхпроводящих щелей $\Delta_{L,S}(T)$, полученные методом андреевской спектроскопии, могут быть использованы для сравнения с нормированной зависимостью $H_{c1}(T)/H_{c1}(0)$. Такой подход, в отличие от альфа-модели, позволяет учесть межзонное взаимодействие, которое влияет на форму $\Delta_{L,S}(T)$. С учетом углового распределения микроскопических параметров порядка $\Delta_{L,S}(\theta)$ и их интегрального значения Δ^{eff} , определенного выше, в двухзонном приближении получим

$$\widetilde{\rho}_{sc}(T) = \varphi \widetilde{\rho}_S^{\text{eff}}(T) + (1 - \varphi) \widetilde{\rho}_L^{\text{eff}}(T).$$
(6)

3. Экспериментальные данные и обсуждение. На рисунке 1 приведены ВАХ и dI(V)/dVспектры SnS-контакта, измеренные ниже и выше $T_c. I(V)$ симметричны относительно eV = 0, не имеют гистерезиса и сверхтоковой ветви, что исключает джозефсоновскую природу наблюдаемых на dI(V)/dV особенностей. Напротив, при $T < T_c$ на ВАХ наблюдается избыточный ток (относительно нормальной I(V) при $T > T_c$) во всем диапазоне смещений eV. В то же время, в сверхпроводящем состоянии на dI(V)/dV-спектрах хорошо виден "пьедестал" при $eV \to 0$ и серия андреевских минимумов. Данные особенности ВАХ и dI(V)/dV соответствуют реализации некогерентного режима МАО и достаточно высокой прозрачности SnS-контакта согласно всем имеющимся теоретическим моделям МАО [20, 21, 23, 24].

При 4.2 К на смещениях $|eV| \approx 8.9$ мэВ и $|eV| \approx$ ≈ 6.4 мэВ наблюдается дублет. Положения минимумов, образующих дублет, не соответствуют формуле (1) и не могут быть интерпретированы как андреевские субгармоники порядка n = 1, 2 или n == 2, 3 от изотропной сверхпроводящей щели. Особенности dI(V)/dV при бо́льших смещениях отсутствуют, т.е. линейный участок спектра соответствует области энергий вне щели, где мощные пики плотности электронных состояний отсутствуют. Таким образом, оба минимума дублета являются фундаментальными n = 1 андреевскими особенностями, а их положения напрямую определяют два энергетических параметра $\Delta_L^{\rm out}\approx 4.5\,{\rm мэB}$
и $\Delta_L^{\rm in}\approx 3.2\,{\rm мэB}.$ Минимум при $|eV|\approx 4.5\,{\rm M}$ соответствует второй субгармонике от Δ_L^{out} .

При меньших смещениях $|eV| \approx 3.2$ и 1.6 мэВ присутствуют минимумы ($n_S = 1$, 2 на рис. 1b), которые, по всей вероятности, являются первой и второй андреевскими особенностями СГС от малой щели $\Delta_S \approx 1.6$ мэВ. Положение второй субгармоники от $\Delta_L^{\rm in}$, ожидаемое при $|eV| \approx 3.2$ мэВ, совпадает с положением фундаментального минимума от Δ_S .

Используя данные ARPES [3], полученные на монокристаллах семейства Ba-122, можно предположить, что (анизотропная) большая сверхпроводящая щель открывается на внутреннем дырочном цилиндре в Г-точке и в электронных зонах, а малая щель – на внешнем Г-цилиндре.

Характеристические отношения энергетических параметров составляют $2\Delta_L^{\text{out}}(0)/k_BT_c \approx 5.5$, $2\Delta_L^{\text{in}}(0)/k_BT_c \approx 4.1$ и $2\Delta_S(0)/k_BT_c \approx 2 < 3.53$ (что характерно для "слабого" конденсата в многощелевом сверхпроводнике).

Подобные дублеты воспроизводимо наблюдаются нами на dI(V)/dV-спектрах других SnS-контактов, полученных в BaFe_{1.92}Ni_{0.08}As₂ из той же закладки, а также в BFNA пере- и оптимально допированного составов [7, 8] и могут быть вызваны анизотропией

большой щели Δ_L в $k_x k_y$ -плоскости (при этом Δ_L^{out} и Δ_L^{in} соответствуют максимальной и минимальной энергии связи куперовских пар в зависимости от направления импульса). В пользу этого предположения, форма дублета может быть аппроксимирована в рамках подхода [25]: результат численного расчета при 4.2 К приведен на рис. 1 сплошной фиолетовой линией, соответствующее угловое распределение $\Delta_L(\theta)$ показано на верхней вставке к рис. 2. С другой стороны, нельзя исключать реализацию двух различных изотропных сверхпроводящих щелей Δ_L^{in} и Δ_L^{out} (открывающихся ниже T_c на различных листах поверхности Ферми). Для малой щели четкие дублеты на dI(V)/dV-спектрах нами воспроизводимо не наблюдаются, что может быть следствием либо изотропности Δ_S , либо степени анизотропии более 50 %, а также наличию нулей в $k_x k_y$ -плоскости. Небольшая амплитуда ($\sim 0.2G_N$) андреевских минимумов от Δ_S также может указывать на сильную анизотропию Δ_S вдоль k_z-направления. Для того чтобы различить вышеуказанные случаи и достоверно определить тип симметрии Δ_L и Δ_S , необходимо расширение имеющихся теоретических моделей МАО [20, 21, 23, 24] для случая анизотропной сверхпроводящей щели и более детальные исследования формы дублетов на dI(V)/dV-спектрах.

С увеличением температуры амплитуда всех андреевских минимумов уменьшается, а их положение смещается в сторону нуля, отражая вариацию параметра порядка $\Delta(T)$ в соответствии с формулой (1). Вместе с этим, уменьшается избыточный ток при $|eV| > 2\Delta_L$ (рис. 1a) и проводимость при нулевом смещении (рис. 1b). Напротив, нормальная проводимость контакта при $|eV| > 2\Delta_L$ остается примерно постоянной (сравните черную сплошную кривую при $T = 4.2 \,\mathrm{K}$ и штриховую линию при $T > T_c$ внизу на рис. 1b при максимальных eV. Для удобства остальные dI(V)/dV-спектры вручную сдвинуты по вертикали в порядке увеличения температуры), что однозначно говорит о баллистическом характере транспорта через этот контакт. При $T \approx$ $\approx 18.9 \,\mathrm{K} > T_c$ на ВАХ и dI(V)/dV-спектре (штриховая линия на рис. 1b) отсутствуют особенности, вызванные андреевским транспортом, что соответствует переходу контактной области в нормальное состояние.

Для удобства рассмотрения андреевских структур, на всех dI(V)/dV-спектрах на рис. 1b была подавлена нормальная динамическая проводимость, являющаяся в SnS-контактах на базе BFNA воспроизводимо нелинейной и имеющая вид, сходный с представленным на рис. 1 в работе [8]. Данная нелинейность не связана с перегревом контакта (в этом случае в нормальном состоянии наблюдался бы максимум dI(V)/dV при малых eV [31]) и может быть интерпретирована как проявление особенностей электронной плотности состояний вблизи уровня Ферми (подробнее см. раздел III(а) в [8]).

Температурные зависимости трех наблюдаемых энергетических щелевых параметров $\Delta_L^{\text{out}}(T), \Delta_L^{\text{in}}(T)$ (кружки) и $\Delta_S(T)$ (треугольники) на рис. 2, полученные напрямую по данным рис. 1b, типичны для случая умеренного межзонного взаимодействия. Для большой щели степень предположительной анизотропии составляет $A(T) \approx 29\% \approx \text{const}(T)$ (квадраты, нижняя вставка к рис. 2). Хотя эта оценка анизотропии является косвенной, можно уверенно констатировать отсутствие точек нулей Δ_L в kпространстве. Вблизи Тс малая щель закрывается быстрее (звезды, нижняя панель рис. 2). Поскольку отношение $\Delta_L(T)/\Delta_S(T) \neq \text{const}$ и увеличивается при $T \to T_c$, андреевские минимумы, обозначенные на рис. 1b как $n_S = 1$, 2, не могут быть интерпретированы как субгармоники высоких порядков от Δ_L , а малая щель Δ_S является отдельным сверхпроводящим параметром порядка. Минимум, обозначенный на рис. 1b синей вертикальной линией и меткой $n_L^{\text{out}} = 2$, является второй субгармоникой от Δ_L^{out} , поскольку имеет смещение, соответствующее ожидаемому $V_2 = v_1/2$, а также совпадающую с $n_L^{\text{out}} = 1$ температурную зависимость (синие кружки на нижней панели к рис. 2; см. также раздел II Дополнительных материалов).

Кривые намагниченности монокристалла ВаFe_{1.92}Ni_{0.08}As₂ приведены на рис. 3. Критерий определения величины H_{c1} (без учета размагничивающего фактора) по зависимости $\sqrt{\Delta M(H)}$ (вставка на рис. 3) типичен для измерений с помощью датчика Холла [32]. Теоретически [33], начальный горизонтальный участок на этой зависимости соответствует мейснеровскому состоянию, а линейный участок – смешанному состоянию. В эксперименте на кривых $\sqrt{\Delta M(H)}$ могут присутствовать шумы и нелинейности, возникающие, на наш взгляд, из-за мелких вкраплений неоднородностей сверхпроводящей фазы, которые могут находиться рядом с чувствительной зоной датчика Холла. Нам удалось достичь чрезвычайно низкого уровня шумов 0.02 – 0.03 Э (при чувствительности датчика 0.5 мкВ/Э), примерно в 20 раз меньшего, чем в работе [32]. Критерием определения H_{c1} (горизонтальная линия на вставке к рис. 3) был выбран уровень сигнала датчика Холла, превышающий

Рис. 3. (Цветной онлайн) Зависимость сигнала датчика Холла от внешнего магнитного поля при различных температурах. На вставке для примера приведены две кривые в координатах $\sqrt{\Delta U(H)}$ для температур 7 К (голубая кривая) и 6 К (коричневая кривая). В этих координатах мейснеровский участок соответствует горизонтальной прямой y = 0, а участок соответствует горизонтальной прямой y = 0, а участок смешанного состояния – линейному ходу, который аппроксимирован штриховыми линиями. Критерием определения H_{c1} был выбран уровень сигнала, обозначенный горизонтальной линией, который стоит, во-первых, выше уровня шумов, а во-вторых, выше уровня нелинейных паразитных вкладов (как видно на голубой кривой)

уровень шумов и нелинейных паразитных вкладов на зависимостях $\sqrt{\Delta M(H)}$.

Полученная по данным рис. 3 зависимость $H_{c1}(T)$ и результаты ее обработки двухзонной альфа-моделью для двух случаев представлены на рис. 4 красными и синими кривыми. В обоих случаях взята $\Delta_L = 3.2 - 4.5$ мэВ со степенью анизотропии $A_L = 29\%$ и характерная величина малой щели $\Delta_S = 1.6$ мэВ, полученные по данным МАО-спектроскопии. В первом случае (красные кривые на рис. 4) Δ_S предполагается изотропной $(A_S = 0)$. Видно, что при $T < 10 \, {\rm K}$ наблюдается значительное различие между экспериментальными данными и расчетом по модели. В этом варианте лучшая аппроксимация достигается при весовом вкладе зон с малой щелью 82%. Во втором случае (синие кривые на рис. 4) была взята анизотропная малая щель, что позволяет получить лучшее согласование между экспериментальным результатом и расчетом при величине анизотропии $A_S = 58\%$ и весовом вкладе зон с малой щелью 62%. При вариации критериев определения H_{c1} из кривых намагничивания наилучшая аппроксимация $H_{c1}(T)$ допускает разброс значений весового вклада зон с

Рис. 4. (Цветной онлайн) Экспериментальная температурная зависимость первого критического поля $H_{c1}(T)$ (черные кружки) и ее аппроксимации: 1. α -модель, изотропная Δ_S , весовой коэффициент $\varphi = 0.28$ (красные кривые); 2. α -модель, 58%-анизотропия Δ_S , $\varphi = 0.38$ (линии синего цвета); 3. выражениями (5), (6) (правая ось, кривые зеленого цвета), 100%-анизотропия Δ_S , $\varphi = 0.6$ (мелкий зеленый пунктир – парциальный вклад зон с изотропной малой щелью $\Delta_S \approx 1.6$ мэВ). Внизу соответствующими цветами показаны отклонения аппроксимаций от экспериментальных данных. Штриховые линии – парциальные вклады зон с малой щелью, штрихпунктирные – зон с большой щелью (анизотропия $A_L = 29\%$), сплошные линии – суммарная концентрация куперовских пар ρ_{sc}

 Δ_S в пределах $\pm 5\%$ и разброс значений анизотропии Δ_S в пределах $\pm 12\%$ от среднего $A_S = 55\%$. Аппроксимации кривых $H_{c1}(T)$ с другими критериями приведены в Дополнительном материале.

Таблица 1. Результаты аппроксимации $H_{c1}(T)$: степень анизотропии малой сверхпроводящей щели A_S , характеристическое отношение для ее эффективной величины $2\Delta_S^{\rm eff}(0)/k_BT_c$ и весовой вклад зон с Δ_S . Диапазоны величин получены при различных критериях выбора значения H_{c1} . Для всех случаев взята анизотропная большая щель с пороговыми амплитудами $\Delta_L^{\rm in} = 3.2$ мэВ и $\Delta_L^{\rm out} = 4.5$ мэВ ($A_L = 29\%$)

Модель	$A_S, \%$	$\frac{2\Delta_S^{\rm eff}(0)}{k_B T_c}$	Вклад зон с Δ_S
α -модель	0	2.03	0.81 - 0.83
α -модель	47-63	1.47	0.60 - 0.66
формула (6)	100	1.01	0.6

Аппроксимация нормированной температурной зависимости $H_{c1}(T)/H_{c1}(0)$ данными микроскопических параметров порядка $\Delta_L^{\text{eff}}(T)$ и $\Delta_S(T)$, полученными методом андреевской спектроскопии, приведена на рис. 4 кривыми зеленого цвета (правая ось). Заметим, что объемная T_c кристалла по данным намагниченности совпадает с T_c андреевского контакта по данным MAO-спектроскопии. Для случая изотропной малой щели $\Delta_S \approx 1.6$ мэВ парциальный вклад соответствующих зон в сверхпроводящую плотность (мелкий пунктир на рис. 4) начинает резко убывать при довольно высоких температурах $T \approx 6$ K, что не позволяет аппроксимировать низкотемпературную часть $H_{c1}(T)/H_{c1}(0)$. При интегрировании выражения (6) по углу можно в целом описать экспериментальные данные с весовым коэффициентом $\varphi \approx 0.6$ для зон с Δ_S , также, предположив ее 100%-анизотропию (что приводит к эффективной величине $\Delta_S^{\text{eff}}(0) \approx 0.8$ мэВ) (сплошная зеленая линия на рис. 4).

Таким образом, наилучшая аппроксимация $H_{c1}(T)$ соответствует второму рассмотренному случаю (синяя кривая на рис. 4, 2-я строка табл. 1).

Из сравнения данных андреевской спектроскопии и первого критического поля видно, что данные $H_{c1}(T)$ не могут быть описаны в рамках изотропного характера Δ_S . Это косвенно указывает на наличие достаточно сильной анизотропии малой щели и наблюдаемости в туннельном эксперименте особенности только от верхнего экстремума $\Delta_S^{out} \approx 1.6$ мэВ.

Поскольку в рамках s^{++} -подхода трудно получить сильную анизотропию сверхпроводящей щели в k-пространстве [6], можно судить о важности спиновых флуктуаций в механизме сверхпроводящего спаривания BFNA недодопированного состава. Тем не менее, щелевая структура BFNA с x = 0.08 достаточно схожа с нашими данными по кристаллам оптимального и передопированного состава [7, 8] (за исключением сильной анизотропии Δ_S , не наблюдаемой нами ранее (предмет дальнейших исследований). Для слабо недодопированного состава мы не наблюдаем заметного изменения анизотропии Δ_L : значение $A_L \approx 30\%$ находится в диапазоне 27–37%, оцененном для составов с x = 0.1, 0.14 [7, 8].

Внизу на рисунке 4 соответствующими цветами показаны отклонения трех аппроксимаций от экспериментальных данных по $H_{c1}(T)$. Видно, что в области быстрого снижения концентрации куперовских пар в зонах с малой щелью Δ_S при $T \sim 7$ К все использованные подходы встречают затруднение с количественным соответствием эксперименту. Можно предположить, что это несоответствие является либо следствием увеличения влияния при этих температурах некоего неучтенного канала неупругого рассеяния на примесях, либо асимметрии электрондырочных состояний ниже T_c в зонах с Δ_S .

4. Заключение. Предложен комплексный подход к исследованию анизотропного сверхпроводящего параметра порядка с помощью андреевской спектроскопии планарных SnS-контактов и измерения первого критического поля. В пниктидах ВаFe_{1.92}Ni_{0.08}As₂ слабо недодопированного состава с $T_c \approx 18.2$ К нами определена $A_L \approx 30$ % анизотропия большой сверхпроводящей щели (без нулей в *k*-пространстве). Мы не наблюдаем заметного изменения ее характеристического отношения $2\Delta_L/k_BT_c \approx$ $\approx 4.1-5.7$ (диапазон соответствует A_L) и степени ее анизотропии по сравнению с другими областями фазовой диаграммы BFNA [7, 8]. Тем не менее, для малой щели на основе температурного поведения $H_{c1}(T)/H_{c1}(0)$ показана значительная анизотропия $A_S \approx 50-100$ %.

Измеренные напрямую температурные зависимости $\Delta_L^{\text{in,out}}(T)$ и $\Delta_S(T)$ типичны для случая умеренного межзонного взаимодействия, степень предположительной анизотропии большой щели практически не меняется с температурой.

Авторы благодарят Ю. А. Алещенко и В. М. Пудалова за полезные обсуждения. Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (тема "Физика высокотемпературных сверхпроводников и новых квантовых материалов", #0023-2019-0005). Измерения частично проведены с использованием оборудования Центра коллективного пользования ФИАН.

- 1. X. Lu, DOI:10.1007/978-981-10-4998-9.
- S. Ideta, T. Yoshida, I. Nishi et al. (Collaboration), Phys. Rev. Lett. **110**, 107007 (2013).
- D. V. Evtushinsky, V. B. Zabolotnyy, L. Harnagea, A. N. Yaresko, S. Thirupathaiah, A. A. Kordyuk, J. Maletz, S. Aswartham, S. Wurmehl, E. Rienks, R. Follath, B. Büchner, and S. V. Borisenko, Phys. Rev. B 87, 094501 (2013).
- K. Cho, M. Konczykowski, S. Teknowijoyo, M. A. Tanatar, Y. Liu, T. A. Lograsso, W. E. Straszhein, V. Mishra, S. Maiti, P. J. Hirschfeld, and R. Prozorov, Sci. Adv. 2, e1600807 (2016).
- 5. P.J. Hirschfeld, Compt. Rend. Phys. 17, 197 (2016).
- T. Saito, S. Onari, and H. Kontani, Phys. Rev. B 88, 045115 (2013).
- T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, JETP Lett. **112**, 786 (2020).
- T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, Phys. Rev. B **104**, 174512 (2021).
- Yu. A. Aleshchenko, A. V. Muratov, G. A. Ummarino, S. Richter, A. A. Thomas, and R. Hühne, J. Phys.: Condens. Matter 33, 045601 (2021).
- Y. Gong, W. Lai, T. Nosach, L.J. Li, G.H. Cao, Z.A. Xu, and Y.H. Ren, New J. Phys. **12**, 123003 (2010).

- Z.-S. Wang, Z.-Y. Wang, H.-Q. Luo, X.-Y. Lu, J. Zhu, C.-H. Li, L. Shan, H. Yang, H.-H. Wen, and C. Ren, Phys. Rev. B 86, 060508(R) (2012).
- M. Abdel-Hafiez, Y. Zhang, Z. He, J. Zhao, C. Bergmann, C. Krellner, C.-Ga. Duan, X. Lu, H. Luo, P. Dai, and X.-J. Chen, Phys. Rev. B 91, 024510 (2015).
- B. Zeng, B. Shen, H. Luo, G. Mu, P. Cheng, H. Yang, L. Shan, C. Ren, and H.-H. Wen, Phys. Rev. B 85, 224514 (2012).
- K. S. Pervakov, V. A. Vlasenko, E. P. Khlybov, A. Zaleski, V. M. Pudalov, and Yu. F. Eltsev, Supercond. Sci. Technol. 26, 015008 (2013).
- Yu. F. Elstsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, Phys.-Uspekhi 57, 827 (2014).
- V.A. Vlasenko, O.A. Sobolevskiy, A.V. Sadakov, K.S. Pervakov, S.Yu. Gavrilkin, A.V. Dik, and Yu.F. Eltsev, JETP Lett. **107**, 119 (2018).
- J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).
- S.A. Kuzmichev and T.E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016).
- Z. Popović, S.A. Kuzmichev, and T.E. Kuzmicheva, J. Appl. Phys. **128**, 013901 (2020).
- M. Octavio, M. Tinkham, G.E. Blonder, and T. M. Klapwijk. Phys. Rev. B 27, 6739 (1983).
- R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).
- 22. G.B. Arnold, J. Low Temp. Phys. 68, 1 (1987).
- D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).
- U. Gunsenheimer and A.D. Zaikin, Phys. Rev. B 50, 6317 (1994).
- T. P. Devereaux and P. Fulde, Phys. Rev. B 47, 14638 (1993).
- 26. G. Wexler, Proc. Phys. Soc. 89, 927 (1966).
- C. Ren, Z.-S. Wang, H.-Q. Luo, H. Yang, L. Shan, and H.-H. Wen, Phys. Rev. Lett. 101, 257006 (2008).
- D. C. Johnston, Supercond. Sci. Technol. 26, 115011 (2013).
- A. Carrington and F. Manzano, Physica C 385, 205 (2003).
- M. Tinkham, Introduction to Superconductivity: Second Edition, McGraw-Hill, N.Y. (1996).
- Yu.G. Naidyuk, O.E. Kvitnitskaya, S. Aswartham, G. Fuchs, K. Nenkov, and S. Wurmehl, Phys. Rev. B 89, 104512 (2014).
- 32. C. Ren, Z.-S. Wang, H.-Q. Luo, H. Yang, L. Shan, and H.-H. Wen, Phys. Rev. Lett. **101**, 257006 (2008).
- M. Naito, A. Matsuda, K. Kitazawa, S. Kambe, I. Tanaka, and H. Kojima, Phys. Rev. B 41, 4823(R) (1990).