Угловая зависимость переданной протону поляризации в процессе $e\vec{p} ightarrow e\vec{p}$

 $M. B. Галынский^{1)}$

Объединенный институт энергетических и ядерных исследований – Сосны НАНБ, 220109 Минск, Беларусь

Поступила в редакцию 28 июля 2022 г. После переработки 30 августа 2022 г. Принята к публикации 1 сентября 2022 г.

Исходя из результатов JLab-поляризационных экспериментов по измерению отношения формфакторов Сакса в процессе $\vec{ep} \rightarrow e\vec{p}$ с использованием параметризаций Kelly (2004) и Qattan (2015) для их отношения, в кинематике эксперимента коллаборации SANE (2020) по измерению двойной спиновой асимметрии в процессе $\vec{ep} \rightarrow ep$, проведен численный анализ зависимости от угла рассеяния протона переданной протону продольной поляризации в процессе $e\vec{p} \rightarrow e\vec{p}$ в случае, когда начальный покоящийся протон частично поляризован вдоль направления движения детектируемого протона отдачи. Показано, что нарушение скейлинга формфакторов Сакса приводит к заметному увеличению абсолютного значения переданной протону поляризации по сравнению со случаем дипольной зависимости.

DOI: 10.31857/S1234567822190028, EDN: khiwbj

Введение. Эксперименты по изучению электрического G_E и магнитного G_M формфакторов протона, так называемых формфакторов Сакса (ФФС), ведутся с 1950-х гг. в процессе упругого рассеяния неполяризованных электронов на протоне. При этом все экспериментальные данные о поведении ФФС были получены с применением техники Розенблюта (TP), основанной на использовании сечения Розенблюта в приближении однофотонного обмена для процесса $ep \rightarrow ep$ в системе покоя начального протона [1]:

$$\frac{d\sigma}{d\Omega_e} = \frac{\alpha^2 E_2 \cos^2(\theta_e/2)}{4E_1^3 \sin^4(\theta_e/2)} \frac{1}{1+\tau_p} \left(G_E^2 + \frac{\tau_p}{\varepsilon} G_M^2 \right). \quad (1)$$

Здесь $\tau_p = Q^2/4M^2$, $Q^2 = 4E_1E_2\sin^2(\theta_e/2)$ – квадрат переданного протону 4-импульса; M – масса протона; E_1, E_2 – энергии начального и конечного электронов, θ_e – угол рассеяния электрона; ε – степень линейной (поперечной) поляризации виртуального фотона [2– 5]; $\alpha = 1/137$ – постоянная тонкой структуры.

При больших значениях Q^2 , как это следует из формулы (1), основной вклад в сечение процесса $ep \to ep$ дает член, пропорциональный G_M^2 , что уже при $Q^2 \ge 2\Gamma \ni B^2$ приводит к значительным трудностям при извлечении вклада G_E^2 [6, 7].

С помощью ТР была установлена дипольная зависимость ФФС от Q^2 в области $Q^2 \leq 6 \ \Gamma \ni B^2$ [6, 7]. Как оказалось, G_E и G_M связаны масштабным соотношением (соотношением скейлинга) $G_M \approx \mu_p G_E$, вследствие чего для их отношения $R \equiv \mu_p G_E/G_M$ справедливо приближенное равенство

$$R \approx 1,$$
 (2)

где $\mu_p = 2.79$ – магнитный момент протона.

В работе Ахиезера и Рекало [3] предложен метод измерения отношения R, основанный на явлении передачи поляризации от начального электрона к конечному протону в процессе $\vec{e}p \rightarrow e\vec{p}$. Прецизионные эксперименты с использованием этого метода, проведенные в Лаборатории им. Т. Джефферсона (JLab, США) [8–10] обнаружили довольно быстрое убывание отношения R с ростом Q^2 , что свидетельствует о нарушении дипольной зависимости (скейлинга) $\Phi\Phi$ С. В интервале 0.4Γ эВ² $\leq Q^2 \leq 5.6 \Gamma$ эВ², как оказалось, это убывание является линейным.

Повторные, более точные измерения отношения R, проведенные в [11–15] в широкой по Q^2 области вплоть до 8.5 ГэВ² с использованием как метода Ахиезера–Рекало [3], так и ТР [15], лишь подтвердили расхождение результатов.

В [16] экспериментальные значения R получены коллаборацией SANE третьим способом [17] путем их извлечений из результатов измерений двойной спиновой асимметрии в процессе $\vec{e}\vec{p} \rightarrow ep$ в случае, когда электронный пучок и протонная мишень частично поляризованы. При этом степень поляризации протонной мишени P_t была равна $P_t = (70 \pm 5)$ %. Эксперимент проводился при двух энергиях электронного пучка E_1 , 5.895 и 4.725 ГэВ и двух значениях Q^2 , 2.06 и 5.66 ГэВ². Извлеченные значения R в [16] нахо-

¹⁾e-mail: galynski@sosny.bas-net.by

дятся в согласии с результатами предыдущих JLabполяризационных экспериментов [8–14].

В [18–22] предложен 4-й метод измерения отношения R, основанный на передаче поляризации от начального к конечному протону в упругом процессе

$$e(p_1) + \vec{p}(q_1, s_1) \to e(p_2) + \vec{p}(q_2, s_2)$$
 (3)

в случае, когда начальный покоящийся и конечный протоны полностью либо частично поляризованы и имеют общую ось квантования спинов, совпадающую с направлением движения детектируемого протона отдачи. Этот метод работает и в приближении двухфотонного обмена и позволяет измерить квадраты модулей обобщенных ФФС [20]. Начало данному направлению исследований было положено в [18].

Отметим, что в монографии [4] (с. 211–215) ее авторами также был проведен общий расчет сечения процесса $e\vec{p} \rightarrow e\vec{p}$ в системе Брейта в случае, когда начальный и конечный протоны частично поляризованы. Однако в [4] при анализе этого сечения авторы действовали по аналогии с [3] и не заметили более интересный случай, обсуждаемый здесь и в [18–22].

В работах [21, 22], исходя из результатов JLabполяризационных экспериментов по измерению отношения R в процессе $\vec{e}p \rightarrow e\vec{p}$, проведен численный анализ Q²-зависимости отношения сечений без переворота и с переворотом спина протона, поляризационной асимметрии в процессе $e\vec{p} \rightarrow e\vec{p}$, а также переданной протону продольной поляризации в кинематике эксперимента [16] в случае, когда покоящийся начальный и конечный протоны поляризованы и имеют общую ось квантования спинов, совпадающую с направлением движения конечного протона (детектируемого протона отдачи). При этом было показано, что переданная протону поляризация обладает заметной чувствительностью к виду зависимости отношения $\Phi\Phi C R$ от Q^2 , т.е. к выбору параметризации для отношения *R*.

В настоящей работе, исходя из результатов JLabполяризационных экспериментов по измерению отношения ФФС в процессе $\vec{ep} \rightarrow e\vec{p}$ с использованием параметризаций Kelly [23] (2004) и Qattan [24] (2015) для их отношения, в кинематике эксперимента коллаборации SANE [16] по измерению двойной спиновой асимметрии в процессе $\vec{ep} \rightarrow ep$ проведен численный анализ зависимости от угла рассеяния протона переданной протону продольной поляризации в процессе $e\vec{p} \rightarrow e\vec{p}$ в случае, когда начальный покоящийся протон частично поляризован вдоль направления движения детектируемого протона отдачи.

Сечение процесса $e\vec{p} \rightarrow e\vec{p}$ в системе покоя начального протона. Рассмотрим спиновые 4-векторы s_1 и s_2 начального и конечного протонов с 4-импульсами q_1 и q_2 в процессе (3) в произвольной системе отсчета. Условия ортогональности ($s_iq_i = 0$) и нормировки ($s_i^2 = -1$) позволяют однозначно определить выражения для их временных и пространственных компонент $s_i = (s_{i0}, \mathbf{s}_i)$ через их 4-скорости $v_i = q_i/M$ (i = 1, 2):

$$s_i = (s_{i0}, \mathbf{s}_i), \ s_{i0} = \mathbf{v}_i \, \mathbf{c}_i, \ \mathbf{s}_i = \mathbf{c}_i + \frac{(\mathbf{c}_i \mathbf{v}_i) \, \mathbf{v}_i}{1 + v_{i0}} , \qquad (4)$$

где единичные 3-векторы $\mathbf{c}_i \ (\mathbf{c}_i^2 = 1)$ – оси квантования спинов.

В лабораторной системе отсчета (ЛСО), где $q_1 = (M, \mathbf{0}), q_2 = (q_{20}, \mathbf{q}_2)$, выберем оси квантования спинов \mathbf{c}_1 и \mathbf{c}_2 так, чтобы они совпадали с направлением движения конечного протона:

$$\mathbf{c} = \mathbf{c}_1 = \mathbf{c}_2 = \mathbf{n}_2 = \mathbf{q}_2 / |\mathbf{q}_2| \,. \tag{5}$$

Тогда спиновые 4-векторы начального (s_1) и конечного протонов (s_2) принимают вид

$$s_1 = (0, \mathbf{n}_2), \ s_2 = (|\mathbf{v}_2|, v_{20} \, \mathbf{n}_2), \ \mathbf{n}_2 = \mathbf{q}_2/|\mathbf{q}_2|.$$
 (6)

Метод [18–22] основан на выражении для дифференциального сечения процесса (3) в ЛСО в случае, когда начальный и конечный протоны поляризованы и имеют общую ось квантования спинов c (5):

$$\frac{d\sigma_{\delta_1,\delta_2}}{d\Omega_e} = \omega_+ \sigma^{\uparrow\uparrow} + \omega_- \sigma^{\downarrow\uparrow},\tag{7}$$

$$\sigma^{\uparrow\uparrow} = \sigma_M \, G_E^2, \ \sigma^{\downarrow\uparrow} = \sigma_M \frac{\tau_p}{\varepsilon} \, G_M^2, \tag{8}$$

$$\sigma_M = \frac{\alpha^2 E_2 \cos^2(\theta_e/2)}{4E_1^3 \sin^4(\theta_e/2)} \frac{1}{1+\tau_p}.$$
 (9)

Здесь ω_{\pm} – поляризационные множители:

$$\omega_{+} = (1 + \delta_1 \delta_2)/2, \ \omega_{-} = (1 - \delta_1 \delta_2)/2,$$
 (10)

где $\delta_{1,2}$ – удвоенные значения проекций спина начального и конечного протонов на ось квантования спинов **с** (5). Отметим, что формула (7) справедлива при $-1 \leq \delta_{1,2} \leq 1$.

Отметим, что формула (7) так же, как и (1), разбивается на сумму двух слагаемых, содержащих только G_E^2 и G_M^2 . Усредняя и суммируя выражение (7) по поляризациям начального и конечного протонов, для сечения Розенблюта (1), $\sigma_R = d\sigma/d\Omega_e$, получаем другое представление [19, 20]:

$$\sigma_R = \sigma^{\uparrow\uparrow} + \sigma^{\downarrow\uparrow}. \tag{11}$$

Следовательно, физический смысл разбиения формулы Розенблюта (1) на сумму двух слагаемых, содержащих только G_E^2 и G_M^2 , заключается в том, что

она является суммой сечений без переворота ($\sigma^{\uparrow\uparrow}$) и с переворотом спина протона ($\sigma^{\downarrow\uparrow}$) в случае, когда начальный покоящийся протон полностью поляризован вдоль направления движения конечного протона. Отметим, что в литературе, в том числе и в пособиях по физике элементарных частиц, часто утверждается, что использование ФФС является просто удобным, так как они придают формуле Розенблюта простой и компактный вид. Поскольку такие формальные соображения об их преимуществах содержатся в том числе и в написанных много лет назад известных монографиях [25, 26], то они не подвергаются сомнениям и воспроизводятся в литературе, например, в [27], вплоть до настоящего времени.

Сечение (7) можно представить в виде

$$d\sigma_{\delta_1,\delta_2}/d\Omega_e = (1+\delta_2\delta_f)(\sigma^{\uparrow\uparrow}+\sigma^{\downarrow\uparrow}), \qquad (12)$$

$$\delta_f = \delta_1 (R_\sigma - 1) / (R_\sigma + 1), \tag{13}$$

$$R_{\sigma} = \sigma^{\uparrow\uparrow} / \sigma^{\downarrow\uparrow}, \qquad (14)$$

где δ_f – степень продольной поляризации конечного протона. В случае полностью поляризованного начального протона ($\delta_1 = 1$) δ_f совпадает с обычным определением поляризационной асимметрии

$$A = (R_{\sigma} - 1)/(R_{\sigma} + 1).$$
(15)

Отношение сечений без переворота и с переворотом спина протона R_{σ} (14), как это следует из (8), можно выразить через экспериментально измеряемую величину $R \equiv \mu_p G_E/G_M$:

$$R_{\sigma} = \frac{\sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow}} = \frac{\varepsilon}{\tau_p} \frac{G_E^2}{G_M^2} = \frac{\varepsilon}{\tau_p \,\mu_p^2} \,R^2. \tag{16}$$

С целью использования стандартных обозначений формулу (13) для степени продольной поляризации конечного протона перепишем в другом виде:

$$P_r = P_t (R_\sigma - 1) / (R_\sigma + 1), \tag{17}$$

заменив δ_f на P_r и δ_1 на P_t .

Формула (17) позволяет выразить отношение R через P_r/P_t . Действительно, обращая связь в (17), имеем:

$$R^{2} = \mu_{p}^{2} \frac{\tau_{p}}{\varepsilon} \frac{1+R_{p}}{1-R_{p}}, \ R_{p} = \frac{P_{r}}{P_{t}}.$$
 (18)

Полученное выражение (18) позволяет извлечь R^2 из результатов эксперимента по измерению переданной протону поляризации P_r в процессе $e\vec{p} \rightarrow e\vec{p}$ в случае, когда начальный покоящийся протон частично поляризован вдоль направления движения детектируемого протона отдачи.

Письма в ЖЭТФ том 116 вып. 7-8 2022

Ниже будут проведены численные расчеты переданной протону поляризации P_r (17) как функции от угла рассеяния протона как при сохранении скейлинга, т.е. в случае дипольной зависимости $(R = R_d)$, так и при его нарушении, при этом будут рассмотрены две параметризации $(R = R_i \ \text{и} \ R = R_k)$:

$$R_d = 1, \tag{19}$$

$$R_j^{-1} = 1 + 0.1430 Q^2 - 0.0086 Q^4 + 0.0072 Q^6, \quad (20)$$

где выражение для R_j (20) предложено в [24]; R_k соответствует параметризации Kelly [23], формулы для которой мы не приводим.

Кинематика процесса. Рассмотрим зависимости энергий конечных электронов и протонов от энергии начального пучка электронов и углов рассеяния электрона и протона в ЛСО, где $q_1 = (M, \mathbf{0})$. Пользуясь законом сохранения 4-импульса $p_1 + q_1 =$ $= p_2 + q_2$, получаем выражения для энергии рассеянного электрона E_2 и переданного протону квадрата 4-импульса $Q^2 = -(q_1 - q_2)^2$ как функций от угла рассеяния электрона θ_e :

$$E_2 = E_1 / (1 + \frac{E_1}{M} (1 - \cos(\theta_e)), \qquad (21)$$

$$Q^{2} = 2E_{1}^{2}(1 - \cos(\theta_{e}))/(1 + \frac{E_{1}}{M}(1 - \cos(\theta_{e}))), \quad (22)$$

где угол θ_e есть угол между векторами \mathbf{p}_1 и \mathbf{p}_2 , $\cos(\theta_e) = \mathbf{p}_1 \mathbf{p}_2 / |\mathbf{p}_1| |\mathbf{p}_2|.$

Энергия конечного электрона E_2 и протона E_{2p} связаны в ЛСО с Q^2 :

$$E_2 = E_1 - Q^2/2M, \quad E_{2p} = M + Q^2/2M, \quad (23)$$

$$E_2 = E_1 - 2M\tau_p, \quad E_{2p} = M(1 + 2\tau_p), \quad \tau_p = Q^2/4M^2. \quad (24)$$

Зависимость E_{2p} и Q^2 от угла рассеяния протона θ_p , т.е. от угла между векторами \mathbf{p}_1 и \mathbf{q}_2 , $\cos(\theta_p) = = \mathbf{p}_1 \mathbf{q}_2 / |\mathbf{p}_1| |\mathbf{q}_2|$, имеет вид:

$$E_{2p} = M \, \frac{(E_1 + M)^2 + E_1^2 \cos^2(\theta_p)}{(E_1 + M)^2 - E_1^2 \cos^2(\theta_p)}, \qquad (25)$$

$$Q^{2} = \frac{4M^{2}E_{1}^{2}\cos^{2}(\theta_{p})}{(E_{1}+M)^{2} - E_{1}^{2}\cos^{2}(\theta_{p})}.$$
 (26)

Соотношения для обратной связи между $\cos(\theta_e)$, $\cos(\theta_p)$ и E_2 , E_{2p} имеют вид:

$$\cos(\theta_e) = 1 - \frac{Q^2}{2E_1E_2} = 1 - \frac{MQ^2}{E_1(2ME_1 - Q^2)},$$
 (27)

$$\cos(\theta_p) = \frac{E_1 + M}{E_1} \sqrt{\frac{\tau_p}{1 + \tau_p}}.$$
(28)

В упругом процессе (3) угол рассеяния электрона θ_e изменяется от 0° до 180°, при этом Q^2 изменяется в области $0 \leq Q^2 \leq Q^2_{\text{max}}$ ($0 \leq \tau_p \leq \tau_{\text{max}}$), где

$$Q_{\max}^2 = \frac{4ME_1^2}{(M+2E_1)}, \ \tau_{\max} = \frac{E_1^2}{M(M+2E_1)}.$$
 (29)

Приведем полезное соотношение

$$\sqrt{\frac{\tau_{\max}}{1+\tau_{\max}}} = \frac{E_1}{M+E_1}.$$
(30)

Из выражения (22) при $\theta_e = 0$ имеем: $Q^2 = 0$, $\tau_p = 0$. Но из соотношения (28) следует, что в этом случае $\cos(\theta_p) = 0$, что соответствует рассеянию протона на 90°.

При рассеянии электрона назад ($\theta_e = 180^\circ$), когда $\tau_p = \tau_{\text{max}}$, из (28) и (30) следует, что $\cos(\theta_p) = 1$, $\theta_p = 0^\circ$. Таким образом, при рассеянии электрона на угол от 0° до 180° ($0^\circ \leq \theta_e \leq 180^\circ$) угол рассеяния протона изменяется от 90° до 0°.

Результаты расчетов зависимости углов рассеяния электрона θ_e и протона θ_p от квадрата переданного протону импульса Q^2 при энергиях электронного пучка в эксперименте коллаборации SANE [16], $E_1 = 4.725$ и $E_1 = 5.895$ ГэВ, представлены графиками на рис. 1. Им соответствуют линии с метками θ_{e4}, θ_{p4} и θ_{e5}, θ_{p5} .

Рис. 1. (Цветной онлайн) Зависимости углов рассеяния электрона θ_e и протона θ_p от Q^2 при энергиях электронного пучка в эксперименте [16]. Линии θ_{e4}, θ_{p4} и θ_{e5}, θ_{p5} построены для $E_1 = 4.725$ и 5.895 ГэВ

Информация об углах рассеяния электрона и протона (в радианах) при энергиях электронного пучка $E_1 = 5.895$ и 4.725 ГэВ и $Q^2 = 2.06$ и 5.66 ГэВ² представлена в табл. 1. В ней также приведены значения Q_{max}^2 (29) для максимально возможных Q^2 при $E_1 = 5.895$ и 4.725 ГэВ.

Таблица 1. Углы рассеяния электрона θ_e и протона θ_p (в радианах) в кинематике эксперимента [16]

E_1 (ГэВ)	$Q^2 \ (\Gamma \mathfrak{s} \mathbb{B}^2)$	θ_e (рад)	θ_p (рад)	$Q_{\rm max}^2 \ (\Gamma \Im B)^2$
5.895	2.06	0.27	0.79	10.247
5.895	5.66	0.59	0.43	10.247
4.725	2.06	0.35	0.76	8.066
4.725	5.66	0.86	0.35	8.066

Поляризация виртуального фотона в процессе $ep \to ep$. Величина ε , входящая в выражение для сечения Розенблюта

$$\varepsilon = (1 + 2(1 + \tau_p) \tan^2(\theta_e/2))^{-1} \tag{31}$$

с областью изменений $0 \leq \varepsilon \leq 1$, в литературе, как правило, отождествляется со степенью продольной поляризации виртуального фотона. Иногда ее также называют параметром поляризации или просто поляризацией виртуального фотона. Правильное понимание физического смысла величины ε встречается довольно редко, в этой связи процитируем абсолютно правильные слова из работы [28]: "Let us introduce another set of kinematical variables: Q^2 , and the degree of the linear polarization of the virtual photon, ε ".

Выражение (31) для ε является функцией от угла рассеяния электрона θ_e . Отличное от (31) выражение для ε , позволяющее проводить расчеты зависимости интересующих величин, например, от Q^2 или от угла рассеяния протона θ_p , приведено ниже, оно получено при использовании результатов работы [5]:

$$\varepsilon^{-1} = 1 + \frac{(E_1 - E_2)^2 + 2(E_1 - E_2)M}{2E_1E_2 - (E_1 - E_2)M}.$$
 (32)

Здесь E_1, E_2 – энергии начального и конечного электронов, причем, для E_2 необходимо использовать выражения (23), (24), в явном виде зависящие только от Q^2 ; в свою очередь, зависимость Q^2 от углов θ_e и θ_p определяется формулами (22) и (26).

Зависимость степени линейной (поперечной) поляризации виртуального фотона ε (32) от квадрата переданного протону импульса Q^2 при энергиях электронного пучка в эксперименте коллаборации SANE [16] представлена на рис. 2.

Из рисунка 2 следует, что ε является убывающей от 1 до 0 функцией от Q^2 . При рассеянии электрона вперед ($\theta_e = 0^\circ$), когда $Q^2 = 0$, $\varepsilon = 1$; при рассеянии электрона назад ($\theta_e = 180^\circ$), когда $Q^2 = Q_{\max}^2$, $\varepsilon = 0$. Значения Q_{\max}^2 для энергий $E_1 = 4.725$ и 5.895 ГэВ приведены в табл. 1, они равны 8.066 и 10.247 ГэВ². Именно в этих точках линии на рис. 2 пересекаются с осью абсцисс.

Рис. 2. (Цветной онлайн) Q^2 -зависимость степени линейной поляризации виртуального фотона ε (32) для энергий электронного пучка 4.725 и 5.895 ГэВ в эксперименте [16]

На рисунке 3 представлена зависимость степени линейной поляризации виртуального фотона ε от углов рассеяния электрона θ_e и протона θ_p при энергиях электронного пучка в эксперименте коллаборации SANE [16]. Отметим, что на левой панели рис. 3 угол θ_e изменяется от 0° до 180°, а на правой θ_p изменяется от 90° до 0°. Такой порядок отсчета углов θ_e и θ_p соответствует области изменения $0 \leq Q^2 \leq Q_{\text{max}}^2$ для каждого из приведенных рисунков.

Графики на рис. 3 позволяют установить следующие закономерности: для одного и того же угла θ_e (θ_p) большему значению энергии электронного пучка E_1 отвечает меньшее (большее) значение ε .

Угловая зависимость переданной протону поляризации в процессе $e\vec{p} \rightarrow e\vec{p}$. В ЛСО степень продольной поляризации, переданной от начального к конечному протону в процессе (3) в случае, когда протонная мишень частично поляризована вдоль направления движения детектируемого протона отдачи, определяется формулой (17). В настоящее время эксперимент по ее измерению представляется вполне реальным, поскольку такая мишень с высокой степенью поляризации $P_t = (70 \pm 5) \%$ принципиально создана и уже использовалась в эксперименте коллаборации SANE [16]. По этой причине наиболее целесообразно было бы провести предлагаемый эксперимент на установке, использованной в [16], при тех же $P_t = 0.70$, энергиях электронного пучка $E_1 = 4.725$ и 5.895 ГэВ и значениях квадратов переданных протону импульсов $Q^2 = 2.06$ и 5.66 ГэВ². Разница между проведением предлагаемого и эксперимента [16] заключается в том, что электронный пучок должен быть неполяризованным, а детектируемый продольно поляризованный протон отдачи должен двигаться строго вдоль направления оси квантования спина протонной мишени. Это условие является следствием требований, налагаемых на ось квантования спинов у начального и конечного протонов (5). Процедура измерения степени продольной и поперечной поляризаций конечного протона отработана и использовалась в экспериментах [8–13]. Для извлечения отношения R (18) в предлагаемом эксперименте необходимо измерить только степень продольной поляризации протона отдачи, что является преимуществом по сравнению с методом [3], использованным в [8–13].

Результаты расчетов зависимости переданной протону продольной поляризации P_r (17) от угла рассеяния протона θ_p для энергий 5.895 и 4.725 ГэВ электронного пучка и $P_t = 0.70$ представлены графиками на рис. 4. На рисунке (а) показана зависимость во всей области изменения углов $\theta_p \in (90^\circ, 0^\circ).$ На рисунке (b) область изменения $\theta_p \in (47^\circ, 18^\circ)$ соответствует кинематике эксперимента [16], где $2.06 \, \Gamma_{\Im} B^2 \leqslant Q^2 \leqslant 5.66 \, \Gamma_{\Im} B^2$, см. табл. 1. При этом линии Pd5, Pk5, Pj5 (Pd4, Pk4, Pj4) соответствуют энергии электронного пучка $E_1 = 5.895$ $(E_1 = 4.725)$ ГэВ. В свою очередь линии Pd5, Pd4построены для $R = R_d$ (19) в случае дипольной зависимости; линии Pk5 и Pk4 соответствуют параметризации Kelly [23] $(R = R_k)$; линии Pj5 и Pj4построены для $R = R_i$ (20) в случае параметризации Qattan [24].

Из графиков на рис. 4 следует, что переданная протону поляризация весьма существенно зависит от вида параметризации отношения R. В случае нарушения скейлинга ФФС, т.е. при $R = R_k$ и $R = R_j$ она заметно увеличивается по абсолютному значению по сравнению со случаем дипольной зависимости, когда $R = R_d$, при этом для всех θ_p имеют место неравенства: |Pd5| < |Pk5| < |Pj5|, |Pd4| < |Pk4| < |Pj4|. Таким образом, линии Pk в случае параметризации Kelly [23] занимают промежуточное положение между Pd и Pj.

Для количественной оценки разницы между Pj, Pk и Pd составлена табл. 2, в которой приведены значения для степени продольной поляризации конечного протона Pj5, Pd5, Pj4, Pd4, Pk5, Pk4 и их относительной разницы Δ_{dj} , Δ_{dk} (выраженной в процентах) при двух энергиях электронного пучка 5.895 и 4.725 ГэВ и двух значениях Q^2 , равных 2.06 и 5.66 ГэВ², где $\Delta_{dj} = (Pj - Pd)/Pj$, $\Delta_{dk} = (Pk - Pd)/Pk$.

Из таблицы 2 следует, что при $Q^2 = 2.06 \,\Gamma \Im B^2$ относительная разница между Pj5 и Pd5 составляет

Рис. 3. (Цветной онлайн) Зависимость степени линейной поляризации виртуального фотона ε от углов рассеяния электрона θ_e (левый рисунок) и протона θ_p (правый рисунок), выраженных в градусах, при энергиях электронного пучка 5.895 и 4.725 ГэВ в эксперименте [16]

Рис. 4. (Цветной онлайн) (a) – Зависимость P_r (17) от угла рассеяния протона θ_p для E_1 и P_t в эксперименте [16] во всей области изменения углов $\theta_p \in (90^\circ, 0^\circ)$. (b) – Та же зависимость в интервале $\theta_p \in (47^\circ, 18^\circ)$, в котором $2.06 \ \Gamma \Rightarrow B^2 \leq Q^2 \leq 5.66 \ \Gamma \Rightarrow B^2$. Линии Pd, Pj и Pk соответствуют дипольной зависимости (19), параметризациям (20) Qattan [24] и Kelly [23]

16.6 %, между Pj4 и Pd4 примерно такая же: 16.1 %. При $Q^2 = 5.66 \,\Gamma$ эВ² эта разница уменьшается и становится равной 9.1 и 6.4 % соответственно.

Разница между Δ_{dj} и Δ_{dk} в табл. 2 является небольшой, она варьируется от 2 до 6%. Объяснить ее можно тем, что параметризация Kelly [23] появилась в 2004 г. до проведения экспериментов [12, 13], результаты которых были учтены в [24] и позволили получить более точную параметризацию.

Заключение. В настоящей работе, исходя из результатов JLab-поляризационных экспериментов по измерению отношения $\Phi\Phi C$ в процессе $\vec{ep} \rightarrow e\vec{p}$ с использованием параметризаций Kelly [23] (2004) и Qattan [24] (2015) для их отношения, в кинематике эксперимента коллаборации SANE [16] (2020) по измерению двойной спиновой асимметрии в процессе $\vec{e}\vec{p} \to ep$, проведен численный анализ зависимости от угла рассеяния протона переданной протону продольной поляризации в процессе $e\vec{p} \to e\vec{p}$ в случае, когда начальный покоящийся протон частично поляризован вдоль направления движения детектируемого протона отдачи. Установлена заметная чувствительность переданной протону поляризации к виду параметризации отношения $\Phi\Phi C$, что открывает возможности для проведения нового независимого эксперимента по его измерению в процессе $e\vec{p} \to e\vec{p}$.

Из расчетов следует, что нарушение скейлинга $\Phi\Phi$ С приводит к заметному увеличению абсолютного значения переданной протону поляризации $|P_r|$ по сравнению со случаем дипольной зависимости, при этом $|P_r|$ в случае параметризации Kelly [23] занимает промежуточное положение между результата-

Таблица 2. Степень продольной поляризации протона отдачи P_r (17) при энергиях электронного пучка $E_1 = 5.895$ и 4.725 ГэВ и значениях $Q^2 = 2.06$ и 5.66 ГэВ². Значения в столбцах для Pd, Pj и Pk соответствуют дипольной зависимости (19), параметризациям (20) Qattan [24] и Kelly [23]. Соответствующие углы рассеяния электронов и протонов (в градусах) приведены в столбцах для θ_e и θ_p

E_1 (ГэВ)	$Q^2 \ (\Gamma \mathfrak{s} \mathbb{B}^2)$	$ heta_{e}\left(^{\circ} ight)$	$\theta_{p}\left(^{\circ} ight)$	Pd	Pj	Pk	Δ_{dj} %	Δ_{dk} %
5.895	2.06	15.51	45.23	-0.460	-0.552	-0.511	16.6	9.98
5.895	5.66	33.57	24.48	-0.628	-0.691	-0.675	9.1	6.96
4.725	2.06	19.97	43.27	-0.467	-0.556	-0.517	16.1	9.67
4.725	5.66	49.50	19.77	-0.649	-0.693	-0.682	6.4	4.84

ми для дипольной зависимости и параметризацией Qattan [24]. Очевидно, что параметризация [24] основана на более широкой базе экспериментальных данных по сравнению с параметризацией Kelly, включая в том числе и результаты работ [12, 13], является более точной и объективной и приводит к небольшим отличиям от результатов для параметризации Kelly.

- 1. M.N. Rosenbluth, Phys. Rev. 79, 615 (1950).
- 2. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).
- 3. А.И. Ахиезер, М.П. Рекало, ЭЧАЯ 4, 662 (1973).
- А. И. Ахиезер, М. П. Рекало, Электродинамика адронов, Наукова думка, Киев (1977), 497 с.
- М.В. Галынский, М.И. Левчук, ЯФ 60(11), 2028 (1997).
- S. Pacetti, R. Baldini Ferroli, and E. Tomasi-Gustafsson, Phys. Rep. 550-551, 1 (2015).
- V. Punjabi, C. F. Perdrisat, M. K. Jones, E. J. Brash, and C. E. Carlson, Eur. Phys. J. A 51, 79 (2015).
- M.K. Jones, K.A. Aniol, F.T. Baker et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 84, 1398 (2000).
- O. Gayou, K. Wijesooriya, A. Afanasev et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. C 64, 038202 (2001).
- O. Gayou, E. J. Brash, M. K. Jones et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 88, 092301 (2002).
- V. Punjabi, C.F. Perdrisat, K.A. Aniol et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. C 71, 055202 (2005).

- A. Puckett, J. Brash, O. Gayou et al. (GEp-III Collaboration), Phys. Rev. Lett. **104**, 242301 (2010).
- A. J. R. Puckett, E. J. Brash, O. Gayou et al. (GEp-III Collaboration), Phys. Rev. C 85, 045203 (2012).
- A. J. R. Puckett, E. J. Brash, M. K. Jones et al. (GEp-III Collaboration), Phys. Rev. C 96, 055203 (2017).
- I.A. Qattan, J. Arrington, R.E. Segel et al. (Collaboration), Phys. Rev. Lett. 94, 142301 (2005).
- A. Liyanage, W. Armstrong, H. Kang et al. (SANE Collaboration), Phys. Rev. C 101, 035206 (2020).
- T. W. Donnelly and A.S. Raskin, Ann. Phys. 169, 247 (1986).
- М. В. Галынский, Э. А. Кураев, Ю. М. Быстрицкий, Письма в ЖЭТФ 88(8), 555 (2008).
- 19. М. В. Галынский, Письма в ЖЭТФ **109** (1), 3 (2019).
- М. В. Галынский, Р. Е. Герасимов, Письма в ЖЭТФ 110(10), 699 (2019).
- 21. М.В. Галынский, Письма в ЖЭТФ **113**(9), 579 (2021).
- 22. М.В. Галынский, Письма в ЭЧАЯ 19(1), 8 (2022).
- 23. J. J. Kelly, Phys. Rev. C 70, 068202 (2004).
- 24. I.A. Qattan, J. Arrington, and A. Alsaad, Phys. Rev. C 91, 065203 (2015).
- 25. А.И. Ахиезер, В.Б. Берестецкий, Квантовая электродинамика, Наука, М. (1969), 624 с.
- В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, Курс теоретической физики, Т. 4. Квантовая электродинамика, Наука, М. (1989), 724 с.
- 27. A. J. R. Puckett, arXiv: 1508.01456 [nucl-ex].
- G.I. Gakh and E. Tomasi-Gustafsson, Nucl. Phys. A 799(1–4), 127 (2008).