## Магнитные свойства тетраборатов Fe<sub>4</sub>BO<sub>7</sub> и Mn<sub>4</sub>BO<sub>7</sub> в трех структурных типах

А.С.Шинкоренко<sup>1)</sup>

Институт физики им. Л. В. Киренского "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения РАН", 660036 Красноярск, Россия

> Поступила в редакцию 19 июля 2022 г. После переработки 12 августа 2022 г. Принята к публикации 22 августа 2022 г.

Кристаллическая структура и магнитные свойства тетраборатов Fe<sub>4</sub>BO<sub>7</sub> и Mn<sub>4</sub>BO<sub>7</sub> были изучены в рамках приближения DFT-GGA. Соединения из семейства тетраборатов могут существовать в различных структурных модификациях. Были рассмотрены три из них, а именно: *Pbca* (тип  $\alpha$ -ZnB<sub>4</sub>O<sub>7</sub>), *Cmcm* (тип  $\beta$ -ZnB<sub>4</sub>O<sub>7</sub>) и *P*6<sub>5</sub>22 (тип  $\gamma$ -NiB<sub>4</sub>O<sub>7</sub>). Возможные магнитные упорядочения в данных структурных типах впервые описаны в рамках теоретико-группового анализа. Последующие DFT расчеты позволили впервые описать магнитную структуру Fe<sub>4</sub>BO<sub>7</sub> и Mn<sub>4</sub>BO<sub>7</sub> в трех структурных типах. При сравнении полной энергии соединений тетраборатов в трех структурных типах без учета спиновой поляризации установлено, что  $\alpha$ -ZnB<sub>4</sub>O<sub>7</sub> и  $\gamma$ -NiB<sub>4</sub>O<sub>7</sub> структуры обладают наименьшей энергией в Mn<sub>4</sub>BO<sub>7</sub> и Fe<sub>4</sub>BO<sub>7</sub> соответственно. Показано, что учет магнитной структуры приводит к тому, что  $\alpha$ -ZnB<sub>4</sub>O<sub>7</sub> становится наиболее выгодным структурным типом для обоих исследуемых соединений. Исследовано поведение энергически выгодным.

DOI: 10.31857/S1234567822180069, EDN: kgclsa

1. Введение. В последнее время возрос интерес к системам с пониженной размерностью и конкурирующими обменными взаимодействиями (низкоразмерные магнетики, фрустрированные магнитные системы). Свойства таких систем существенно отличаются от свойств обычных магнетиков. Одними из таких соединений являются тетрабораты переходных металлов с общей химической формулой Ме<sup>+2</sup>В<sub>4</sub>О<sub>7</sub>, где Ме — переходный металл. Данные соединения образуются в нескольких структурных модификациях, с треугольниками ВО3 и/или тетраэдрами BO<sub>4</sub> в качестве структурных единиц [1-7]. В тетраборатах переходных металлов существует два основных структурных типа: так называемые  $\alpha$ -ZnB<sub>4</sub>O<sub>7</sub> (пр. гр. *Pbca*) и  $\beta$ -ZnB<sub>4</sub>O<sub>7</sub> (пр. гр. Стст). Кроме того, недавно в [6] была обнаружена новая структурная модификация тетрабората никеля *γ*-NiB<sub>4</sub>O<sub>7</sub> с пространственной группой симметрии  $P6_522.$ 

Магнитные свойства тетраборатов с атомами переходных металлов, таких как железо, марганец, кобальт и никель, в настоящее время изучены недостаточно [2, 5, 6]. В частности, магнитная структура тетраборатов Fe<sub>4</sub>BO<sub>7</sub> и Mn<sub>4</sub>BO<sub>7</sub> до сих пор не выяснена. В настоящей работе в рамках расчетов *ab initio* рассмотрены три структурные модификации тетраборатов FeB<sub>4</sub>O<sub>7</sub> и MnB<sub>4</sub>O<sub>7</sub>, а именно, *Pbca* ( $\alpha$ -структурный тип), *Cmcm* ( $\beta$ -структурный тип) и *P*6<sub>5</sub>22 ( $\gamma$ -структурный тип). В этих структурных модификациях магнитные атомы образуют необычные структурные мотивы. В работе впервые получена магнитная структурных модификациях, а также изучена возможность их стабилизации под действием давления.

2. Детали расчета. Расчеты проводились с использованием пакета Vienna Ab initio Simulation Package (VASP) [9,10] с использованием PAW –

В то же время интерес вызывает возможность возникновения фрустрации обменных взаимодействий и появления низкоразмерного магнетизма в известных структурных типах соединений тетраборатов переходных металлов. Так, например, исследование магнитных свойств тетрабората  $\gamma$ -NiB<sub>4</sub>O<sub>7</sub> с пространственной группой симметрии  $P6_522$  показывает, что это соединение является одномерным гейзенберговским антиферромагнетиком [5]. В [8] показано, что квазиодномерный магнетизм в этой фазе обусловлен магнитным взаимодействием вдоль цепочек октаэдров Me<sup>+2</sup>O<sub>6</sub>.

 $<sup>^{1)}\</sup>mathrm{e\text{-}mail:}\ \mathrm{shas@iph.krasn.ru}$ 

псевдопотенциалов [11, 12]. Конфигурация валентных электронов для ионов Fe, Mn, B и O была:  $3d^74s^1$ ,  $3p^64s^2$ ,  $3d^6$ ,  $2s^22p^1$ ,  $2s^22p^4$ , соответственно. Обменно-корреляционный функционал учитывался с использованием приближения обобщенного градиента (GGA) [13]. Число плоских волн было ограничено энергией 600 эВ. При оптимизации кристаллических структур сетка Монкхорста-Пака [14] выбиралась таким образом, чтобы плотность k-точек в разных структурных типах была одинаковой. Для этого использовался параметр KSPACING = 0.2, что соответствует сеткам Монкхорста–Пака  $4 \times 4 \times 3$ ,  $3 \times 5 \times 6$  и  $4 \times 4 \times 1$  для структур с группами симметрии *Pbca*, *Cmcm* и *P6*<sub>5</sub>22 соответственно. Для каждого структурного типа проводилась полная оптимизация кристаллической структуры. Параметры и координаты атомов оптимизировались до тех пор, пока силы на ионах не достигали величины не более, чем 1 мэВ/А. Теоретико-групповой анализ магнитных структур выполнен в пакете FullProf (BASIREPS) [15] для волнового вектора  $\mathbf{k} = 0$ .

## 3. Результаты и обсуждение.

3.1. Кристаллическая структура. На рисунке 1 приведены кристаллические структуры  $\alpha$ - (рис. 1a),  $\beta$ - (рис. 1b),  $\gamma$ - (рис. 1c) структурных типов. Кристаллическая структура α-типа с пространственной группой симметрии *Pbca* содержит восемь формульных единиц (Z = 8) и состоит из бор-кислородных тетраэдров и треугольников, образующих разреженную сеть. Магнитные атомы образуют димеры, связанные между собой зигзагообразными цепочками. Структуры  $\beta$ -типа и  $\gamma$ -типа с Cmcm (Z = 4) и  $P6_522$ (Z = 6) пространственными группами симметрии соответственно, состоят из бор-кислородных тетраэдров и более плотно упакованы. Магнитные атомы в  $\beta$ -структурном типе образуют слои неправильных сот, расположенных в плоскостях bc вдоль оси a. В структуре  $\gamma$ -типа магнитные атомы также образуют слои в плоскостях *ab* вдоль оси *c*, состоящие из правильных шестиугольников.

Рассмотрим вначале неспинполяризованный случай. В таблице 1 приведены параметры решетки и полные энергии относительно самого низкоэнергетического структурного типа для всех рассмотренных структур вместе с известными экспериментальными данными.

Как видно из табл. 1, в неспинполяризованном случае для тетрабората  $FeB_4O_7$  наиболее энергетически выгодным является  $\gamma$ -структурный тип, а для  $MnB_4O_7 - \alpha$ -структурный тип. Экспериментально известно, что тетраборат  $MnB_4O_7$  синтезирован в двух стабильных модификациях: в фазе  $\alpha$ -MnB<sub>4</sub>O<sub>7</sub>

при нормальном давлении [4] и β-MnB<sub>4</sub>O<sub>7</sub> при давлении  $P = 7.5 \Gamma \Pi a$  [6]. Однако, как следует из нашего расчета, структурный тип  $\gamma$ -MnB<sub>4</sub>O<sub>7</sub> лежит ниже по энергии, чем β-MnB<sub>4</sub>O<sub>7</sub>. Что касается тетрабората FeB<sub>4</sub>O<sub>7</sub>, то его структурная модификация при нормальном давлении неизвестна, а синтез под давлением  $P = 10.5 \,\Gamma\Pi a$  [3] приводит к формированию структурного типа  $\beta$ -FeB<sub>4</sub>O<sub>7</sub>. Как видно из табл. 1, структурный тип *β*-FeB<sub>4</sub>O<sub>7</sub> всего на 0.07 эВ выше по энергии, чем *γ*-FeB<sub>4</sub>O<sub>7</sub>. Однако этот расчет был проведен без учета магнитной структуры. В настоящее время неизвестны экспериментально установленные магнитные структуры в соединениях FeB<sub>4</sub>O<sub>7</sub> и MnB<sub>4</sub>O<sub>7</sub>. Для определения возможных магнитных структур в исследуемых тетраборатах был проведен теоретико-групповой анализ.

3.2. Теоретико-групповой анализ магнитных структур в  $\alpha$ -,  $\beta$ - и  $\gamma$ -структурных типах.

а)  $\alpha$ -структурный тип.  $\alpha$ -структурный тип имеет орторомбическую симметрию с пространственной группой симметрии *Pbca* (#61). Для этой группы симметрии существует восемь одномерных неприводимых представлений. Разложение магнитного представления по неприводимым представлениям имеет вид:  $\Gamma = 3\tau_1 + 3\tau_2 + 3\tau_3 + 3\tau_4 + 3\tau_5 + 3\tau_6 + 3\tau_7 + 3\tau_8$ .

Для каждой компоненты спинового магнитного момента возможны ферромагнитная ( $\Phi$ M) и семь различных антиферромагнитных ( $A\Phi$ M) конфигураций. В табл. 2 приведены возможные типы  $A\Phi$ M упорядочений на примере *z*-компоненты спинового магнитного момента. Для оценки возможности реализации того или иного магнитного упорядочений (табл. 2). Магнитные моменты для всех типов магнитного упорядочения равны 3.6  $\mu_B$  и 4.5  $\mu_B$  для тетраборатов FeB<sub>4</sub>O<sub>7</sub> и MnB<sub>4</sub>O<sub>7</sub> соответственно.

Как видно, различные  $A\Phi M$  конфигурации имеют близкие энергии. Как в  $\alpha$ -MnB<sub>4</sub>O<sub>7</sub>, так и в  $\alpha$ -FeB<sub>4</sub>O<sub>7</sub> наименьшую энергию имеет  $A\Phi M_5$  тип упорядочения (рис. 2). Как видно, в данном случае внутри зигзагообразных цепочек имеет место  $\Phi M$  упорядочение, а взаимодействия между цепочками антиферромагнитны.  $\Phi M$  упорядочение является наименее энергетически выгодным для обоих тетраборатов.

б)  $\beta$ -структурный тип.  $\beta$ -структурный тип имеет пространственную группу симметрии Стст (#63). Для этой группы симметрии существует восемь одномерных неприводимых представлений. Разложение магнитного представления в неприводимых представлениях выглядит следующим образом:  $\Gamma = \tau_2 + \tau_3 + \tau_4 + \tau_5 + \tau_7 + \tau_8$ .



Рис. 1. (Цветной онлайн) Кристаллическая структура: (a) –  $\alpha$ -типа (пр. гр. Pbca); (b) –  $\beta$ -типа (пр. гр. Cmcm); (c) –  $\gamma$ -типа (пр. гр.  $P6_522$ )

**Таблица 1.** Вычисленные параметры решетки (a, b, c) и разность энергий относительно самого низкоэнергетического структурного типа ( $\Delta E$ ) в неспинполяризованном случае. В скобках приведены известные экспериментальные параметры решетки

| Структурный      | Группа     | FeB <sub>4</sub> O <sub>7</sub> [3] |                   |                   |                                              |  |  |  |
|------------------|------------|-------------------------------------|-------------------|-------------------|----------------------------------------------|--|--|--|
| тип              | симметрии  | a, Å                                | $b, \mathrm{\AA}$ | $c, \mathrm{\AA}$ | $\Delta E,$ э $\mathrm{B}/\mathrm{\phi.ed.}$ |  |  |  |
| α-тип            | Pbca       | 13.60                               | 8.08              | 8.68              | 0.35                                         |  |  |  |
| В-тип            | Cmcm       | 10.95                               | 6.30              | 5.23              | 0.07                                         |  |  |  |
| p-1mi            | Omem       | (10.88)                             | (6.52)            | (5.20)            | 0.01                                         |  |  |  |
| $\gamma$ -тип    | $P6_{5}22$ | 4.34                                | 4.34              | 35.30             | 0.00                                         |  |  |  |
| $MnB_4O_7$ [4,6] |            |                                     |                   |                   |                                              |  |  |  |
| 0-71411          | Phea       | 13.77                               | 8.13              | 8.75              | 0.00                                         |  |  |  |
| a-inii           | 1 0ca      | (14.01)                             | (8.07)            | (8.62)            | 0.00                                         |  |  |  |
| ß-mun            | Cmam       | 10.98                               | 6.39              | 5.23              | 0.30                                         |  |  |  |
| p-1mi            | Cmem       | (10.89)                             | (6.63)            | (5.19)            | 0.59                                         |  |  |  |
| $\gamma$ -тип    | $P6_{5}22$ | 4.37                                | 4.37              | 35.55             | 0.02                                         |  |  |  |

В  $\beta$ -структурном типе возможны только коллинеарные ФМ и АФМ упорядочения. Энергии обоих возможных магнитных упорядочений для  $\beta$ -FeB<sub>4</sub>O<sub>7</sub> и  $\beta$ -MnB<sub>4</sub>O<sub>7</sub> приведены в табл. 3. Магнитные моменты для всех магнитных конфигураций равны  $3.6 \mu_B$  и  $4.5 \mu_B$  для  $\beta$ -FeB<sub>4</sub>O<sub>7</sub> и  $\beta$ -MnB<sub>4</sub>O<sub>7</sub> соответственно.

Как видно из табл. 3, в обоих случаях энергетически выгодной является антиферромагнитная структура. На рисунке 3 изображено АФМ упорядочение: в плоскости обмен между магнитными ионами ФМ, а между плоскостями – АФМ. Заметим, что энергии двух магнитных упорядочений в обоих тетраборатах

| Таблица 2. Энергии возможных магнитных конфигураций                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------|
| соединений $\alpha$ -FeB <sub>4</sub> O <sub>7</sub> и $\alpha$ -MnB <sub>4</sub> O <sub>7</sub> ( $\Delta E$ ) относительно $\Phi$ M |
| упорядочения (полная энергия ΦМ состояния для α-FeB <sub>4</sub> O <sub>7</sub>                                                       |
| $E = -95.8063$ эВ, для $\alpha$ -MnB <sub>4</sub> O <sub>7</sub> $E = -97.9077$ эВ)                                                   |

| Типы ма               | агнитного | $\alpha$ -FeB <sub>4</sub> O <sub>7</sub>    | $\alpha$ -MnB <sub>4</sub> O <sub>7</sub> |  |
|-----------------------|-----------|----------------------------------------------|-------------------------------------------|--|
| упоряд                | цочения   | $\Delta E,$ э $\mathrm{B}/\mathrm{\phi.ed.}$ | $\Delta E,$ эВ/ф.ед.                      |  |
| $\tau_3 \ (\Phi M)$   | +++++++   | 0.0000                                       | 0.0000                                    |  |
| $\tau_1 (A \Phi M_1)$ | ++++      | -0.0037                                      | -0.0033                                   |  |
| $\tau_2 (A\Phi M_2)$  | ++++      | -0.0040                                      | -0.0028                                   |  |
| $\tau_4 (A \Phi M_3)$ | ++++      | -0.0032                                      | -0.0031                                   |  |
| $\tau_5 (A \Phi M_4)$ | ++++      | -0.0047                                      | -0.0038                                   |  |
| $\tau_6 (A \Phi M_5)$ | +++-      | -0.0060                                      | -0.0048                                   |  |
| $\tau_7 (A \Phi M_6)$ | +-+-+-    | -0.0023                                      | -0.0020                                   |  |
| $\tau_8 (A \Phi M_7)$ | +-+-+     | -0.0042                                      | -0.0036                                   |  |



Рис. 2. (Цветной онлайн) Магнитная структура для  $A\Phi M_5$  типа упорядочения в  $\alpha$ -структурном типе (см. табл. 3). Показаны только магнитные атомы

близки, что указывает на возможную фрустрацию магнитных подсистем в них.

в)  $\gamma$ -структурный тип.  $\gamma$ -структурный тип имеет гексагональную симметрию с пространственной группой симметрии  $P6_522~(\#179)$ . Разложение магнитного представления в неприводимых представле-

**Таблица 3.** Энергии возможных магнитных упорядочений тетраборатов  $\beta$ -FeB<sub>4</sub>O<sub>7</sub> и  $\beta$ -MnB<sub>4</sub>O<sub>7</sub> ( $\Delta E$ ) относительно ФМ упорядочения (энергия ФМ состояния для  $\beta$ -FeB<sub>4</sub>O<sub>7</sub> E = -95.0701 эВ, для  $\beta$ -MnB<sub>4</sub>O<sub>7</sub> E = -97.1917 эВ)

| Типы                       | $\beta$ -FeB <sub>4</sub> O <sub>7</sub>     | $\beta$ -MnB <sub>4</sub> O <sub>7</sub>     |  |  |  |
|----------------------------|----------------------------------------------|----------------------------------------------|--|--|--|
| магнитного<br>упорядочения | $\Delta E,$ э $\mathrm{B}/\mathrm{\phi.ed.}$ | $\Delta E,$ э $\mathrm{B}/\mathrm{\phi.ed.}$ |  |  |  |
| $	au_3 (\Phi M)$           | 0.0000                                       | 0.0000                                       |  |  |  |
| $\tau_8 \ (A\Phi M)$       | -0.0055                                      | -0.0058                                      |  |  |  |



Рис. 3. (Цветной онлайн) А<br/>ФМ структура для  $\beta$ -структурного типа, показаны только магнитные атомы

ниях выглядит следующим образом:  $\Gamma = \tau_1 + 2\tau_2 + 3\tau_3 + 2\tau_4 + \tau_5 + 3\tau_6$ .

В  $\gamma$ -структурном типе возможны как коллинеарные, так и неколлинеарные магнитные структуры. Энергии возможных магнитных упорядочений для соединений  $\gamma$ -FeB<sub>4</sub>O<sub>7</sub> и  $\gamma$ -MnB<sub>4</sub>O<sub>7</sub> приведены в табл. 4. Средние магнитные моменты для всех типов магнитного упорядочения равны 3.6  $\mu_B$  и 4.5  $\mu_B$ для  $\gamma$ -FeB<sub>4</sub>O<sub>7</sub> и  $\gamma$ -MnB<sub>4</sub>O<sub>7</sub> соответственно. В тетраборате железа коллинеарное ферромагнитное упорядочение имеет наименьшую энергию. В то же время в тетраборате марганца ситуация более сложная: три неколлинеарные магнитные конфигурации близки по энергии, что также указывает на возможную фрустрацию магнитных подсистем в них.

**Таблица 4.** Энергии возможных магнитных упорядочений тетраборатов FeB<sub>4</sub>O<sub>7</sub> и MnB<sub>4</sub>O<sub>7</sub> ( $\Delta E$ ) относительно  $\Phi$ M упорядочения в структурном типе  $\gamma$ -NiB<sub>4</sub>O<sub>7</sub> (энергия  $\Phi$ M состояния для FeB<sub>4</sub>O<sub>7</sub> E = -95.1303 эB, для MnB<sub>4</sub>O<sub>7</sub> E = -96.9742 эB)

| Типы магнитного               | $\gamma$ -FeB <sub>4</sub> O <sub>7</sub>   | $\gamma$ -MnB <sub>4</sub> O <sub>7</sub> |
|-------------------------------|---------------------------------------------|-------------------------------------------|
| упорядочения                  | $\Delta E,$ э $\mathrm{B}/\mathrm{\phi.ed}$ | $\Delta E,$ эВ/ф.ед                       |
| Коллинеарная $\Phi M(\tau_2)$ | 0.0000                                      | 0.0000                                    |
| Коллинеарная АФМ $(\tau_4)$   | 0.0015                                      | -0.0003                                   |
| Неколлинеарная АФМ $(\tau_1)$ | 0.0006                                      | -0.0056                                   |
| Неколлинеарная АФМ $(\tau_2)$ | 0.0342                                      | -0.0057                                   |
| Неколлинеарная АФМ $(\tau_4)$ | 0.0006                                      | -0.0010                                   |
| Неколлинеарная АФМ $(\tau_5)$ | 0.0007                                      | -0.0057                                   |

Таким образом, в рамках теоретико-группового анализа и DFT расчетов впервые найдено основное магнитное состояние тетраборатов FeB<sub>4</sub>O<sub>7</sub> и MnB<sub>4</sub>O<sub>7</sub>. Из сравнения полных энергий видно, что в обоих тетраборатах  $\alpha$ -структурный тип имеет более низкую энергию, чем  $\beta$ - и  $\gamma$ -структурные типы. При этом разница энергий между этими структурными типами велика,  $\Delta E \sim 0.7$  эB/ф.ед. (FeB<sub>4</sub>O<sub>7</sub>) и  $\sim 0.9$  эB/ф.ед. (MnB<sub>4</sub>O<sub>7</sub>). Таким образом, учет магнитной структуры приводит к тому, что  $\alpha$ -структурный тип становится более выраженным в MnB<sub>4</sub>O<sub>7</sub> по сравнению с другими структурными типами, а в  $\alpha$ -FeB<sub>4</sub>O<sub>7</sub> становится наиболее энергетически выгодным структурным типом вместо  $\gamma$ -структурного типа.

3.3. Поведение под давлением. Как следует из предыдущего раздела,  $\gamma$ -структурный тип не является энергетически выгодным для обоих соединений. Однако, как следует из [5], фаза  $\gamma$ -NiB<sub>4</sub>O<sub>7</sub> обладает необычными магнитными свойствами. Исследуемые тетрабораты FeB<sub>4</sub>O<sub>7</sub> и MnB<sub>4</sub>O<sub>7</sub> имеют изоморфные структуры с тетраборатом NiB<sub>4</sub>O<sub>7</sub>, поэтому не исключено, что структурный тип  $\gamma$ -NiB<sub>4</sub>O<sub>7</sub> также может реализовываться в исследуемых соединениях, например, под давлением. Для проверки этого предположения было проведено исследование поведения различных структурных типов под давлением.

Для каждого структурного типа мы использовали тип магнитного упорядочения с наименьшей энергией для каждого соединения (см. табл. 2–4). В табл. 5 приведены параметры решетки для каждого структурного типа.

Как видно из рис. 4,  $\alpha$ -структурный тип имеет наименьшую энергию в обоих соединениях при нулевом давлении. Энергии  $\beta$ - и  $\gamma$ -структурных типов выше на  $\sim 1$  эВ/ф.ед. в обоих тетраборатах. Этот результат хорошо согласуется с экспериментальными данными для тетрабората марганца [4,6]. Как упоминалось выше, экспериментальная структура для тетрабората железа не известна при нулевом давлении, но наши результаты предсказывают, что для него α-структурный тип также будет фазой с самой низкой энергией. Дальнейшее увеличение давления (4.4 ГПа для тетрабората железа и 4.6 ГПа для тетрабората марганца) приводит к тому, что  $\beta$ структурный тип становится выгодным по энергии в обоих соединениях, что также согласуется с экспериментом [3, 6]. *β*-структурный тип остается самой низкоэнергетической фазой и при дальнейшем увеличении давления. Заметим, что *γ*-структурный тип не становится энергетически выгодным вплоть до давления 8 ГПа. Однако следует отметить, что в тетраборате железа в диапазоне давлений 4–5 ГПа энергии всех трех структурных типов близки и можно предположить возможное появление  $\gamma$ -структурного типа в некоторых интервалах давлений в процессе синтеза. Так, в тетраборате никеля эта фаза появляется экспериментально именно при данном давлении [5].

Выводы. Таким образом, были исследованы структурные и магнитные свойства магнитных тетраборатов MnB<sub>4</sub>O<sub>7</sub> и FeB<sub>4</sub>O<sub>7</sub>. Были рассмотрены три возможных варианта структур:  $\alpha$ - (типа  $\alpha$ -ZnB<sub>4</sub>O<sub>7</sub>),  $\beta$ - (типа  $\beta$ -ZnB<sub>4</sub>O<sub>7</sub>) и  $\gamma$ - (типа  $\gamma$ -NiB<sub>4</sub>O<sub>7</sub>) структурные типы. Поскольку экспериментальные данные о магнитной структуре в тетраборатах MnB<sub>4</sub>O<sub>7</sub> и FeB<sub>4</sub>O<sub>7</sub> отсутствуют в литературе, для определения возможных магнитных упорядочений и поиска наиболее энергетически выгодной магнитной структуры данных соединений был проведен теоретикогрупповой анализ с последующим DFT расчетом. Было получено, что во всех структурных типах тетраборат MnB<sub>4</sub>O<sub>7</sub> обладает АФМ упорядочением. Тетраборат FeB<sub>4</sub>O<sub>7</sub> в *α*- и β-структурных типах также обладает АФМ упорядочением, однако в γ-структурном типе ΦM фаза оказывается более энергетически выгодной. Обнаружено, что при нулевом давлении и в отсутствие магнитных взаимодействий  $\alpha$ -MnB<sub>4</sub>O<sub>7</sub> и  $\gamma$ -FeB<sub>4</sub>O<sub>7</sub> фазы имеют самую низкую энергию среди других структурных типов. Учет магнитных взаимодействий приводит к тому, что α-структурный тип становится наиболее выгодным по энергии как для MnB<sub>4</sub>O<sub>7</sub>, так и для FeB<sub>4</sub>O<sub>7</sub>. Это согласуется с экспериментальными результатами для тетрабората марганца и может служить предсказанием возможной структуры тетрабората железа. при нормальном давлении. Приложенное давление в диапазоне 4-5 ГПа приводит к тому, что β-структурный тип становится более энергетически выгодным в обоих случаях. В тетраборате железа

| Таблица 5   | . Вычисленные   | (спин-поляр | изованные)  | и экспе | риментал         | ьные пар  | аметры ј | решетки | a ( $a$ , $b$ | о, <i>с</i> ) и р | азность | энерги | й отно- |
|-------------|-----------------|-------------|-------------|---------|------------------|-----------|----------|---------|---------------|-------------------|---------|--------|---------|
| сительно са | мого низкоэнерг | тического   | структурног | о типа  | $(\Delta E)$ . B | скобках п | гриведен | ы экспе | римен         | тальнь            | е парам | етры р | ешетки  |

| Структурный      | Группа     | $FeB_4O_7$ [3] |        |                   |                                              |  |  |
|------------------|------------|----------------|--------|-------------------|----------------------------------------------|--|--|
| тип              | симметрии  | a, Å           | b, Å   | $c, \mathrm{\AA}$ | $\Delta E,$ э $\mathrm{B}/\mathrm{\phi.ed.}$ |  |  |
| α-тип            | Pbca       | 13.98          | 8.16   | 8.73              | 0                                            |  |  |
| 6                | Cmcm       | 10.96          | 6.53   | 5.25              | 0.73                                         |  |  |
| р-тип            |            | (10.88)        | (6.52) | (5.20)            |                                              |  |  |
| $\gamma$ -тип    | $P6_{5}22$ | 4.33           | 4.33   | 35.30             | 0.67                                         |  |  |
| $MnB_4O_7$ [4,6] |            |                |        |                   |                                              |  |  |
| α-тип            | Pbca       | 14.12          | 8.53   | 8.79              | 0                                            |  |  |
|                  |            | (14.01)        | (8.07) | (8.62)            |                                              |  |  |
| eta-тип          | C          | 10.95          | 6.69   | 5.23              | 0.72                                         |  |  |
|                  | Omem       | (10.89)        | (6.63) | (5.19)            |                                              |  |  |
| $\gamma$ -тип    | $P6_{5}22$ | 4.36           | 4.36   | 35.52             | 0.93                                         |  |  |



Рис. 4. (Цветной онлайн) Зависимости энтальпии от давления для различных структурных типов тетраборатов: (a) – FeB<sub>4</sub>O<sub>7</sub>; (b) – MnB<sub>4</sub>O<sub>7</sub>. Энергия α-структурного типа при нулевом давлении принята за ноль. Каждая точка на графике соответствует энтальпии кристалла, полученной при приложении гидростатического давления к кристаллу и последующей релаксации

энергии трех структурных типов при давлении 4.2– 4.6 ГПа близки, что предполагает возможность существования  $\gamma$ -структурного типа в узком диапазоне давлений. Поскольку экспериментальные данные отсутствуют, существующие теоретические предсказания магнитной структуры тетраборатов могут быть полезны и интересны для будущих экспериментальных работ.

Исследование выполнено при поддержке гранта Российского научного фонда # 22-22-20024, https://rscf.ru/project/22-22-20024/.

Расчеты выполнены с использованием компьютерных ресурсов "Комплексное моделирование и обработка данных научно-исследовательских установок мега-класса НИЦ "Курчатовский институт" (http://ckp.urcki.ru).

- J. L. C. Rowsell, N. J. Taylor, and L. F. Nazar, J. Solid State Chem. **174**, 189 (2003).
- T. Yang, Y. Wang, D. Yang, G. Lib, and J. Lin, Solid State Sciences 19, 32 (2013).
- S. C. Neumair, H. Huppertz, J. S. Knyrim, R. Glaum, and H. Huppertz, Z. Anorg. Allg. Chem. 635, 2002 (2009).
- S. C. Abrahams, J. L. Bernstein, P. Gibart, M. Robbins, and R. C. Sherwood, J. Chem. Phys. 60, 5 (1974).
- M. K. Schmitt, O. Janka, O. Niehaus, T. Dresselhaus, R. Pöttgen, F. Pielnhofer, R. Weihrich, M. Krzhizhanovskaya, S. Filatov, R. Bubnova, L. Bayarjargal, B. Winkler, R. Glaum, and H. Huppertz, Inorg. Chem. 56, 4217 (2017).

- J.S. Knyrim, J. Friedrichs, S. Neumair, F. Roeßner, Y. Floredo, S. Jakob, D. Johrendt, R. Glaum, and H. Huppertz, Solid State Sciences 10, 168 (2008).
- Т. Хамаганова, Неорганические материалы 57(8), 866 (2021) [T.N. Khamaganova, Inorganic Materials 57(8), 824 (2021)].
- А.С. Шинкоренко, В.И. Зиненко, М.С. Павловский, ФТТ **63**(3), 376 (2021) [A.S. Shinkorenko, V.I. Zinenko, and M.S. Pavlovskii, Physics of the Solid State **63**(3), 468 (2021)].
- 9. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

- G. Kresse and J. Furthmuller, Phys. Rev. B 54(11), 169 (1996).
- 11. G. Kresse and D. Joubert, Phys. Rev. B 9, 1758 (1999).
- 12. P.E. Blochl, Phys. Rev. B 50(17), 953 (1994).
- J. P. Perdew, in *Electronic Structures of Solids'91*, ed. by P. Ziesche and H. Eschrig, Akademie Verlag, Berlin (1991), p. 11.
- H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- 15. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).