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Medium effects for hadron-tagged jets in proton-proton collisions
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The observations at RHIC and the LHC in AA col-

lisions of the transverse flow effects and the strong sup-

pression of high-pT hadron spectra (jet quenching) give

evidence of the quark-gluon plasma (QGP) formation in

AA collisions (for reviews see, e.g., [1–3]). The results of

hydrodynamic analyses of the flow effects support that

the QGP is formed at the proper time τ0 ∼ 0.5 − 1 fm

[1, 2]. The observation of the ridge effect [4, 5] in pp col-

lisions at the LHC energies, suggests that a mini QGP

(mQGP) can be created in pp collisions as well. This

is also supported by the steep growth of the midrapid-

ity strange particle production at charged multiplicity

dNch/dη ∼ 5 [6]. This agrees with the onset of the QGP

regime at dNch/dη ∼ 6, found in [7] from behavior of

〈pT 〉 as a function of multiplicity, employing van Hove’s

arguments that the phase transition should lead to an

anomalous multiplicity dependence of 〈pT 〉. These es-

timates of the critical multiplicity density for the on-

set of the mQGP formation regime are smaller than

the typical midrapidity charged multiplicity of the soft

(underlying-event (UE)) hadrons for jet events in pp col-

lisions at the LHC energies – dNch/dη ∼ 10−15 (it is

bigger than the ordinary minimum bias multiplicity by

a factor of ∼ 2−2.5 [8]).

The mQGP formation in pp collisions should lead

to some jet modification. However, one can expect that

the quenching effects in pp collisions should be signifi-

cantly smaller than in heavy ion collisions due to lower

temperature of the mQGP and due to strong reduc-

tion of the induced gluon emission for a small size fire-

ball. The latter is closely related to the anomalously

strong L-dependence of the radiative parton energy loss,

∆Er, in a finite-size QCD matter [9] (as compared to

predictions of the Bethe–Heitler formula). Fixed cou-

pling calculations without the Coulomb effects within

the BDMPS approach [9] give ∆Er ∝ L2 for a static

QGP, and ∆Er ∝ L [10] for an expanding QGP with

entropy density s ∝ 1/τ (as in the Bjorken model with

purely longitudinal expansion of the QGP). The lin-
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ear L-dependence of ∆Er for an expanding QGP re-

mains approximately valid also for calculations with ac-

curate treatment of the Coulomb effects with running

αs [11]. Calculations of the medium modification factor

Rpp (which is not directly observable quantity) within

the light-cone path integral (LCPI) approach [12] with

accurate treatment of the Coulomb effects and running

αs give a small deviation of Rpp from unity at the LHC

energies [13] (Rpp ∼ 0.8 at pT ∼ 10GeV). For this rea-

son observation of jet quenching in pp collisions via a

weak modification of the pT -dependence of hadron spec-

tra is practically impossible. A promising observable for

quenching effects in pp collisions is the variation with

the UE activity of the medium modification factor Ipp
for the photon-tagged jet fragmentation functions (FFs)

[14]. However, this measurement requires high statis-

tics due to a very small cross section. This problem is

absent for the modification factor Ipp for the hadron-

tagged jets. The medium modification factor Ipp for the

di-hadron production in pp collisions can be written sim-

ilarly to AA collisions [15]
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where pa,tT and ya,t are the transverse momenta and

rapidities of the trigger (ht) and the associated (ha)

hadrons, Y pp
m is the per-trigger yield accounting the

medium effects, and Y pp
v is the per-trigger yield calcu-

lated ignoring the medium effects. The per-trigger yields

(similarly to AA collisions [15]) can be written in terms

of the di-hadron (back-to-back) and one-hadron inclu-

sive cross sections as

Y pp
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Of course, the denominator in (1) is unobservable. But

one can study the UE multiplicity dependence of Ipp,

say, by using the ratio of the per-trigger yield to its

minimum bias value. Because we can reasonably expect

that the UE multiplicity dependence of the numerator
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and the denominator of (2) for Y pp
v is very similar, and

consequently Y pp
v /〈Y pp

v 〉 ≈ 1. Then we have

Ipp(p
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T , y
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This relation allows one to study the multiplicity de-

pendence of Ipp by measuring the per-trigger yield

(which corresponds to the theoretical Y pp
m ). Recently,

this method has been used by ALICE [16] in the first

measurement of the variation of Ipp with the UE mul-

tiplicity for the hadron-tagged jets for 5.02TeV pp col-

lisions (for the trigger hadron momentum 8 < ptT <

15GeV, and the associated away side hadron momen-

tum 4 < paT < 6GeV). It was found that Ipp decreases

monotonically by about 15 % with increase of the UE ac-

tivity in the range 5 . dNch/dη . 20 (we use dNch/dη

for the whole range of the azimuthal angle φ and the

transverse momentum which is bigger by a factor of

∼ 4.4 than the transverse side charged multiplicity NTS
ch

of [16] for the kinematic region π/3 ≤ |φ| ≤ 2π/3,

|η| < 0.8, and pT > 0.5GeV). Such a decrease of Ipp
agrees qualitatively with the quenching effect obtained

in [14] for the jet energy E = 25GeV (which is of the

order of the jet energy for the ALICE trigger particle

momentum region [16]). For drawing a more definitive

conclusion on whether the ALICE data [16] on Ipp may

be consistent with jet quenching in the mQGP, it is of

course highly desirable to perform calculations of Ipp for

hadron-tagged jets accounting for the jet energy fluctu-

ations and the quenching effects for both the back-to-

back jets. In the present paper, we carry out such calcu-

lations of Ipp for hadron-tagged jets for conditions of the

ALICE experiment [16] within the LCPI approach [12]

to the induced gluon emission. We use the parametriza-

tion of the running QCD coupling αs(Q, T ) which has

a plateau around Q ∼ κT (motivated by the lattice

calculations of the effective QCD coupling in the QGP

[17]). We use the value of κ fitted in [13] to the LHC

heavy ion data on the nuclear modification factor RAA.

We find that the theoretical predictions with no free

parameters for the multiplicity dependence of the ra-

tio Ipp/〈Ipp〉 for 5.02 TeV pp collisions are in reason-

able agreement with the recent preliminary data from

ALICE [16]. The description of the data becomes bet-

ter for the scenario with an incomplete thermalization

of the matter at dNch/dη . 10. Our results show that

the drop of the ratio Ipp/〈Ipp〉 with the UE multiplicity,

if confirmed by further measurements, may be viewed

as the first direct evidence for the jet quenching in pp

collisions.
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