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In studies of the universal low-energy dynamics, it is

natural to use a zero-range model for short-range two-

body interactions. Nevertheless, in the few-body prob-

lem this leads to essential difficulties, which manifest,

e.g., in the appearance of Efimov or Thomas effects.

Minlos and Faddeev suggested a modification of zero-

range interactions in the influential paper [1]. A main

idea was to add a regularizing term, which diminishes

the interaction strength in vicinity of the triple-collision

point. It was shown that the Efimov or Thomas effects

are suppressed if a strength of the regularizing term σ

exceeds the critical value σc. Later on it was declared

[2–4] that σ ≥ σc is sufficient for unambiguous formula-

tion of the three-body problem.

The present work is aimed to study the Minlos–

Faddeev regularization both for the two-component sys-

tem consisting of two identical bosons of mass m inter-

acting with distinct particle of mass m1 and for the sys-

tem consisting of three identical bosons. The zero-range

interaction is completely determined by the scattering

length, which could be taken as a length scale, as a re-

sult, the mass ratio m/m1 becomes a single essential

parameter in the problem.

In terms of the scaled Jacobi variables x and y, the

Hamiltonian in the center-of-mass frame is formally de-

fined as the six-dimensional Laplace operator supple-

mented by the boundary conditions at zero distance be-

tween the interacting particles,

lim
x→0

[
∂ log(xΨ)

∂x
− σ

cosω

θ(y)

y

]

= −sign(a), (1)

where θ(y) is an arbitrary bounded function normalized

by θ(0) = 1 and θ′(0) = 0. The factor 1/ cosω is in-

troduced for convenience and the kinematic angle ω is

defined by sinω = 1/(1 +m1/m). It is sufficient to im-

pose only one boundary condition of the form (1) if the

symmetry under permutations of identical particles is
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taken into account. As is well established, the regular-

ization is required for the LP = 0+ states, therefore,

namely this case will be considered here.

To analyze the proposed regularization, the problem

is transformed to a system of the hyper-radial equations

[5–7] and the solution near the triple-collision point, i.e.,

for small hyper-radius ρ (ρ2 = x2 + y2) is studied. In

the ρ → 0 limit, the problem reduces to the two-body

Schrödinger equation with the singular potential of the

form Vsing(ρ) =
γ̃2 − 1/4

ρ2
+
q

ρ
, which was multiply dis-

cussed in literature, e. g., in [7–9].

The results of [7] on the quantum problem for

Vsing(ρ) are briefly summarized below. In the case γ̃2 ≥
≥ 1 the problem is unambigouosly defined by the con-

dition of square integrability. To define the problem for

0 ≤ γ̃2 < 1 one should introduce an additional real-

valued parameter b by imposing the boundary condi-

tion, e.g., of the form proposed in [7]

f(ρ) −−−→
ρ→0

ρ
1
2+γ̃− sign(b)|b|2γ̃ρ 1

2−γ̃

(

1 +
qρ

1− 2γ̃

)

, (2)

where the q-dependent term can be omitted for 0 ≤
γ̃2 < 1/4. Finally, for γ̃2 < 0, i.e., pure imaginary γ̃,

one could define the unambiguous problem, e. g., by

the requirement f(ρ) −−−→
ρ→0

ρ1/2 sin(|γ̃| log(ρ) + δ) [8, 9].

This results in the asymptotic energy spectrum, En ∼
∼ e−2πn/|γ̃|, which depends exponentially on the level’s

number. In fact, these considerations explain the Efimov

effect in the three-body problem [1, 10].

Both γ̃ and q are single-valued functions of σ, which

are obtained by solving the auxiliary eigenvalue prob-

lem on a hyper-sphere (for fixed ρ) with the boundary

condition (1). Similar to [6, 7] one finds the equations

σ sin γ̃
π

2
=

sin γ̃ω

sinω
− γ̃ cosω cos γ̃

π

2
(3)

for the two-component system and

σ sin γ̃
π

2
= 4 sin γ̃

π
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−

√
3

2
γ̃ cos γ̃

π

2
(4)
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for three identical bosons. These equations implic-

itly determine monotonically increasing functions γ̃2(σ)

shown in Fig. 1 both for the two-component system for

m/m1 = 1 and for three identical bosons.

Fig. 1. (Color online) Dependence γ̃2 on the regulariza-

tion parameter σ are plotted by solid (red) line for three

identical bosons and by dashed (blue) line for two iden-

tical bosons and a distinct particle of the same mass

(m/m1 = 1). Arrows indicate the critical values σc, σe,

and σr at lower (upper) border for the former (latter) case

From the previous discussion one concludes that the

Minlos–Faddeev regularization gives rise to four differ-

ent types of description in four different intervals of the

parameter σ separated by the critical values σc, σe, and

σr, which correspond to γ̃2 = 0, 1/4, and 1, respectively.

The critical values for the two-component system follow

from (3),

σc =
2

π

( ω

sinω
− cosω

)

, (5)

σe =
1

√
2 cos

ω

2

− 1

2
cosω, (6)

and σr = 1. In the case of equal masses (m/m1 = 1)

Eqs. (5) and (6) give σc = 2/3 −
√
3/π ≈ 0.11534 and

σe = 3
√
3/4 − 1 ≈ 0.29904. The same value of σc was

given in [4]. From (4) one finds σc = 4/3 −
√
3/π ≈

≈ 0.78200, σe = 7
√
3/4 − 2 ≈ 1.03109, and σr = 2 for

three identical bosons. The value of σc is the same as

in [1–3].

Starting from the Minlos and Faddeev suggestion to

modify the two-body zero-range interaction [1] it was

declared [2–4] that the three-body problem becomes reg-

ularized, if the regularization parameter σ exceeds the

critical value σc, i.e., if σ is sufficiently large to suppress

the Efimov or Thomas effects.

In this work it is shown that the Minlos–Faddeev

regularization gives different results in four intervals of

the non-negative parameter σ, in particular, more strict

condition on the regularization parameter, σ > σr > σc,

is necessary for unambiguous description of the three-

body problem. Within the interval σc ≤ σ < σr, it is

necessary to set a boundary condition of the form (2)

depending on a real-valued parameter b and the q-

dependence can be safely omitted if σc ≤ σ < σe. At

last, the Efimov or Thomas effect takes place for σ < σc
and the famous exponential asymptotic of the energy

spectrum is obtained by imposing the boundary condi-

tion at ρ → 0. To exemplify in details the main con-

clusions, three critical values σc, σe, and σr are deter-

mined both for the two-component system consisting of

two identical bosons and a distinct particle and for the

system consisting of three identical bosons. The effect of

regularization is additionally demonstrated by the cal-

culation of the bound-state energy for three identical

bosons as a function of σ and b.

It is worthwhile to mention that the described sce-

nario is anticipated for any problem, whose proper-

ties are essentially determined by the effective potential

with the inverse square singularity, which strength goes

through the critical values. Besides the two-component

system consisting of two identical fermions and a dis-

tinct particle, which was described in [7], this scenario

could be of importance also for the three-body problem

in the mixed dimensions and in presence of the spin-

orbit interaction.

This is an excerpt of the article “Minlos–Faddeev reg-

ularization of zero-range interactions in the three-body

problem”. Full text of the paper is published in JETP

Letters journal. DOI: 10.1134/S002136402260118X.
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