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Non-central heavy-ion collisions at high energies are

characterized by a huge global angular momentum of

the order of 103–105~, depending on the collision energy

and centrality. Although a large part of the angular mo-

mentum is carried away by the spectator nucleons, its

sizable fraction is accumulated in the created dense and

highly excited matter, that implies a strong rotational

motion of this matter. This matter is conventionally

associated with a (participant) fluid because it is suc-

cessfully described by the fluid dynamics. Such rotation

leads to a strong vortical structure inside the produced

fluid. Local fluid vorticity induces a preferential orien-

tation of spins of emitted particles through spin-orbit

coupling. The STAR Collaboration at the Relativistic

Heavy-Ion Collider discovered the global polarization of

emitted Λ hyperons, which indicated fluid vorticity of

ω ≈ (9 ± 1)× 1021 s−1 [1]. This result exceeds the vor-

ticity of all ever known fluids in nature. This discovery

have opened an entirely new direction of research in

heavy-ion physics.

The major part of applications to heavy-ion colli-

sions was performed within thermodynamic approach

in terms of hadronic degrees of freedom [2–4]. In the

present paper, we discuss this thermodynamic approach.

The key quantity of the thermodynamic approach is

thermal vorticity

̟µν =
1

2
(∂νβµ − ∂µβν), (1)

where βµ = uµ/T , uµ is collective local four-velocity

of the matter, and T is local temperature. The cor-

responding mean spin vector of Λ particles with four-

momentum p, produced around point x on freeze-out

hypersurface is
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Sµ
̟(x, p) = − 1

8m
[1− f(x, p)] ǫµναβpν , ̟αβ(x), (2)

where f(x, p) = 1/{exp[(uνpν−µ)/T ]+1} is the Fermi–

Dirac distribution function, m is mass of the Λ hyperon

and µ is the baryon chemical potential.

It was recently realized [5–7] that there are other

additional contributions to the mean spin vector, if the

thermal equilibrium is local. These are the so-called

thermal-shear (Sµ
ξ ) and spin-Hall (Sµ

ζ ) contributions:

Sµ
ξ (x, p) =

1

4m
[1− f(x, p)]ǫµναβ

pνnβp
ρ

(n · p) ξρα, (3)

Sµ
ζ (x, p) =

1

4m
[1− f(x, p)]ǫµναβ

pαnβ

(n · p)∂νζ, (4)

where ζ = µ/T ,

ξµν =
1

2
(∂µβν + ∂νβµ) , (5)

is the thermal-shear tensor, and n is a four-vector that

is the main subject of the discussion below. In [5], the n

four-vector is defined as the time direction in the center-

of-mass frame of colliding nuclei: nβ = t̂β = (1, 0, 0, 0).

Only the shear term was considered in [5]. In [6, 7], the n

four-vector is identified with the four-velocity: nβ = uβ.

In the mid-rapidity region these choices are very close

because uβ ≈ t̂β . However, at forward-backward rapidi-

ties, which are relevant to fixed-target polarization mea-

surements [8–10], they may significantly differ.

In this paper, we consider consequences of these dif-

ferent choices at the example of the global polarization

of Λ-hyperons. The global polarization is chosen be-

cause it allows a significant advance in the analytical

treatment, if momentum acceptance is disregarded, and

because it is relevant to fixed-target polarization mea-

surements at moderately relativistic energies [8–10].
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The polarization of the Λ hyperon is measured in its

rest frame, therefore the Λ polarization is

Pµ(x, p) = S∗µ(x, p)/SΛ, (6)

where SΛ = 1/2 is the spin of the Λ hyperon, Sµ =

= Sµ
̟ + Sµ

ξ + Sµ
ζ , and S∗µ is the mean Λ-spin vector in

the Λ rest frame

S∗(x, p) = S− t̂ · S
t̂ · p+m

pΛ
def
= S−∆S, (7)

where ∆S is the boost correction. The zeroth compo-

nent of S∗µ identically vanishes.

It is shown that alternative definitions of the

thermal-shear contribution to the polarization in heavy-

ion collisions, [5] on the one hand and [6, 7] on the other,

result in very different corrections to the global Λ po-

larization averaged over wide range of momenta. The

spin-Hall contribution to the polarization, defined ac-

cordingly to [6, 7], results in identicaly zero correction

to the global Λ polarization, if averaged over all mo-

menta of Λ’s. Only application of restrictive momen-

tum acceptance and the boost (to Λ rest frame) cor-

rection result in nonzero global spin-Hall polarization.

If the spin-Hall contribution were defined similarly to

[5], the global spin-Hall polarization would be non-zero

even without any acceptance and the boost correction.
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