Инерционный возвратно-поступательный фотомотор

В. М. Розенбаум^{+*1)}, И. В. Шапочкина^{+*}, Л. И. Трахтенберг^{$\times \circ$}

+Белорусский государственный университет, 220050 Минск, Беларусь

* Совместный институт ДПУ и БГУ, Даляньский политехнический университет, 116024 Далянь, КНР

 $^{ imes}$ Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН, 119991 Москва, Россия

^оМосковский государственный университет имени М.В.Ломоносова, 119991 Москва, Россия

Поступила в редакцию 11 октября 2022 г. После переработки 30 октября 2022 г. Принята к публикации 3 ноября 2022 г.

Представлена теория инерционного возвратно-поступательного броуновского мотора, приводимого в движение детерминистическими дихотомными флуктуациями параметров броуновской частицы и удерживающих потенциалов (которые могут быть реализованы оптическими методами). В случае параболических потенциалов равновесные и неравновесные флуктуации оказываются не связанными между собой, что позволяет свести решение уравнения Клейна–Крамерса к решению чисто механикодинамической задачи. Учет инерционных эффектов приводит к немонотонной зависимости средней скорости движения мотора (характеризующей эффективность преобразования поступающей энергии флуктуаций потенциала в энергию возвратно-поступательного движения) от частоты флуктуаций, а в пределе малого коэффициента трения – к резонансным процессам.

DOI: 10.31857/S1234567822240090, EDN: nexpuq

Наноразмерный объект, направленное движение которого возникает в асимметричной среде вследствие неравновесных флуктуаций параметров объекта или окружения и описывается в рамках диффузионной динамики, принято называть броуновским мотором [1-6]. Если флуктуации инициируются фотовозбуждением, то такой объект относят к броуновским фотомоторам [7–10]. Направленное движение нанообъекта может быть результатом преобразования возвратно-поступательного или вращательного движения в поступательное подобно тому, как направленное движение автомобиля возникает в результате преобразования возвратно-поступательного движения поршня в двигателе внутреннего сгорания во вращательное движение колес, а затем в движение автомобиля как целого. Примером может служить направленное движение "четырехколесной" молекулы на металлической подложке, инициированное конформационными изменениями ее компонентов при электронных и колебательных возбуждениях [11]. Возвратно-поступательное движение двух связанных белковых частиц вследствие особенностей возникновения белкового трения (зависимости коэффициента трения от скорости скольжения) может быть преобразовано в поступательное движе-

Безынерционное рассмотрение возвратнопоступательного броуновского мотора, функционирующего за счет стохастического дихотомного процесса, проводилось в работах [14, 19–21]. Основной характеристикой мотора, описывающей интенсивность возникающего моторного эффекта, является его средняя скорость. Без учета массы частицы и для параболических потенциалов зависимость средней скорости от частоты неравновесных флуктуаций является монотонно возрастающей функцией, выходящей на насыщение (принимающей ненулевое значение) в высокочастотном пределе. Этот результат является недостатком безынерционного рассмотрения. Очевидно, что скорость направленного движения, в которое может быть преобразовано возвратно-поступательное, должна

ние этих частиц вдоль поверхности [12–14]. Интерес к анализу неравновесных процессов, вовлеченных в возникновение возвратно-поступательного движения частиц, связан также с изучением механизма оптомеханического превращения энергии в бистабильных фоточувствительных азобензолах [15], а также особенностей функционирования молекулярных машин на основе супрамолекулярных соединений типа "гость-хозяин", состоящих из молекул органического стирилового красителя и кавитанда кукурбитурила [16–18].

¹⁾e-mail: vik-roz@mail.ru

стремиться к нулю в высокочастотном пределе [1]. В данной статье мы устраняем этот недостаток путем учета инерции частицы, претерпевающей детерминистические дихотомные флуктуации ее параметров, и выявляем ряд новых и интересных закономерностей, характерных для инерционных возвратно-поступательных броуновских моторов.

Проведем статистическое описание динамики движения броуновской частицы, пребывающей в двух периодически переключающихся состояниях, обозначаемых далее символами "+" и "-" и имеющих длительности τ_+ и τ_- . Будем для общности считать, что в каждом из состояний частица характеризуется массой m_{\pm} , коэффициентом трения ζ_{\pm} и потенциальной энергией $U_{\pm}(x)$. Обозначим через $p_{\pm}(x, v, t)$ плотность вероятности найти частицу в состояниях "+" или "-" с координатой x и скоростью v в момент времени t. Тогда броуновская динамика частицы описывается уравнением Клейна–Крамерса [22]

$$\frac{\partial}{\partial t} p_{\pm}(x,v,t) = -\frac{\partial}{\partial x} v p_{\pm}(x,v,t) + \frac{1}{m_{\pm}} \frac{\partial}{\partial v} \left(\zeta_{\pm} v + U'_{\pm}(x) + \frac{\zeta_{\pm} k_B T}{m_{\pm}} \frac{\partial}{\partial v} \right) p_{\pm}(x,v,t), \quad (1)$$

в котором k_B – постоянная Больцмана, T – абсолютная температура. Учет переключения состояний предполагает наложение дополнительных условий, связывающих плотности вероятности $p_+(x, v, t)$ и $p_-(x, v, t)$ в определенные моменты времени. Если интересоваться только установившимся периодическим процессом, в котором зависимость от начальных условий исчезает, то время t можно отсчитывать от моментов переключений потенциалов, так что $t \in [0, \tau_+]$ в состоянии "+" и $t \in [0, \tau_-]$ в состоянии "–". Тогда дополнительные условия на плотность вероятности, являющейся периодической функцией времени с периодом $\tau = \tau_+ + \tau_-$, принимают вид:

$$p_{\pm}(x, v, \tau_{\pm}) = p_{\mp}(x, v, 0).$$
 (2)

Вторым условием, налагаемым на плотность вероятности, является условие нормировки:

$$\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dv p_{\pm}(x, v, t) = 1.$$
(3)

Будем считать, что потенциальные энергии $U_{\pm}(x)$ относятся к классу удерживающих потенциалов $(U_{+}(\pm\infty) \rightarrow \infty, U_{-}(\pm\infty) \rightarrow \infty)$. Тогда частица не может уйти на бесконечность, и плотность вероятности обращается в нуль как при $v \rightarrow \pm\infty$, так и при $x \rightarrow \pm\infty$. С учетом этого факта результаты

почленного интегрирования левой и правой частей уравнения (1) по скорости и по координате можно записать в следующем виде:

$$\frac{\partial}{\partial t} \int_{-\infty}^{\infty} dv p_{\pm}(x, v, t) = -\frac{\partial}{\partial x} \int_{-\infty}^{\infty} dv \, v \, p_{\pm}(x, v, t),$$
$$\frac{\partial}{\partial t} \int_{-\infty}^{\infty} dx p_{\pm}(x, v, t) = \frac{1}{m_{\pm}} \frac{\partial}{\partial v} \times$$
$$\times \int_{-\infty}^{\infty} dx \left(\zeta_{\pm} v + U_{\pm}'(x) + \frac{\zeta_{\pm} k_B T}{m_{\pm}} \frac{\partial}{\partial v} \right) p_{\pm}(x, v, t) \quad (4)$$

или, после почленного интегрирования первого уравнения дважды по координате, а второго дважды по скорости, как

$$\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dv \, v \, p_{\pm}(x, v, t) =$$

$$= -\frac{\partial}{\partial t} \int_{-\infty}^{\infty} dv \int_{-\infty}^{-\infty} dx \int_{-\infty}^{x} dy \, p_{\pm}(y, v, t) =$$

$$= \frac{\partial}{\partial t} \int_{-\infty}^{\infty} dv \int_{-\infty}^{\infty} dy \, y \, p_{\pm}(y, v, t),$$

$$\frac{1}{m_{\pm}} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dv [\zeta_{\pm}v + U'_{\pm}(x)] p_{\pm}(x, v, t) =$$

$$= \frac{\partial}{\partial t} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dv \int_{-\infty}^{v} dv' p_{\pm}(x, v', t) =$$

$$= -\frac{\partial}{\partial t} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dv \int_{-\infty}^{\infty} dv' v' p_{\pm}(x, v', t). \quad (5)$$

Введем далее операцию усреднения по "+" и "–" состояниям

$$\langle \ldots \rangle_{\pm} = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dv \ldots p_{\pm}(x, v, t)$$
 (6)

и применим ее к уравнениям (5), что даст систему уравнений, связывающих усредненные по " \pm " состояниям координаты и скорости:

$$\langle v \rangle_{\pm} = \frac{d}{dt} \langle x \rangle_{\pm}, \quad \frac{1}{m_{\pm}} [\zeta_{\pm} \langle v \rangle_{\pm} + \langle U'_{\pm}(x) \rangle_{\pm}] = -\frac{d}{dt} \langle v \rangle_{\pm}.$$
(7)

Средняя скорость возвратно-поступательного движения наночастицы (мотора) в состояниях "+" и "-"

Письма в ЖЭТФ том 116 вып. 11-12 2022

определяется соотношениями $\langle v_{\pm} \rangle = (\tau_{\pm}/\tau) \langle \bar{v} \rangle_{\pm}$, где $\langle \bar{v} \rangle_{\pm} = \tau_{\pm}^{-1} \int_{0}^{\tau_{\pm}} dt \langle v \rangle_{\pm}$, которую можно записать в терминах величин $\langle x \rangle_{\pm}$ как

$$\langle v_{\pm} \rangle = \tau^{-1} \left(\langle x \rangle_{\pm} |_{t=\tau_{\pm}} - \langle x \rangle_{\pm} |_{t=0} \right).$$
 (8)

С учетом (2) справедливо равенство $\langle x \rangle_{\pm}|_{t=\tau_{+}}$ = $=\langle x \rangle_{\mp}|_{t=0},$ в силу которого сумма скоростей $\langle v_{+} \rangle$ + $+\langle v_{-}\rangle$ за период равна нулю, как и должно быть для возвратно поступательного движения. С другой стороны, абсолютное значение скорости $V \equiv |\langle v_+ \rangle|$ обратно пропорционально периоду процесса и прямо пропорционально разности средних значений координаты $|\langle x \rangle_{-} - \langle x \rangle_{+}|$ в моменты времени переключений состояний t = 0 или τ_{\pm} , а потому увеличивается симбатно поступающей в систему энергии, расходуемой в дальнейшем на диссипативные процессы. Поэтому величина V может рассматриваться как мера эффективности преобразования энергии частицы, связанной с переключениями потенциалов, в энергию возвратно-поступательного движения. Аналогично трактуется и безынерционная средняя скорость возвратно-поступательного движения, инициируемая стохастическим дихотомным процессом переключения состояний [14, 19–21].

Система дифференциальных уравнений (7) может быть сведена к одному уравнению второго порядка:

$$m_{\pm}\frac{d^2}{dt^2}\langle x\rangle_{\pm} + \zeta_{\pm}\frac{d}{dt}\langle x\rangle_{\pm} + \langle U'_{\pm}(x)\rangle_{\pm} = 0, \qquad (9)$$

имеющему вид второго закона Ньютона для средних величин. Для потенциальных энергий произвольного вида величина $\langle U'_{\pm}(x) \rangle_{\pm}$ может быть рассчитана только при известной функции плотности вероятности $p_{\pm}(x, v, t)$ – решении уравнения (1). Поэтому представление (9), вообще говоря, не может быть использовано для получения аналитических результатов и практически бесполезно для численного нахождения количественных характеристик в силу громоздкости решения и сложности обработки исключительных случаев (например, скачков в функциональных зависимостях). Однако для параболических потенциалов

$$U_{\pm}(x) = \frac{1}{2}k_{\pm}(x - a_{\pm})^2 \tag{10}$$

в силу равенства $\langle U'_{\pm}(x) \rangle_{\pm} = k_{\pm}(\langle x \rangle_{\pm} - a_{\pm})$ уравнение (9) становится замкнутым для определения закона движения $x_{\pm}(t) \equiv \langle x \rangle_{\pm}$. Это означает, что в описании движения в переключающихся параболических потенциалах равновесные и неравновесные флуктуации оказываются не связанными между собой, тем

Письма в ЖЭТФ том 116 вып. 11-12 2022

самым позволяя свести задачу решения уравнения Клейна–Крамерса к чисто механико-динамической задаче.

Упростим дальнейшее рассмотрение, перейдя к наиболее интересному для приложений и наглядному частному случаю, когда величины m_{\pm} , ζ_{\pm} , k_{\pm} и τ_{\pm} одинаковы в каждом из двух состояний (обозначаемые далее через m, ζ , k и $\tau/2$), а изменяются только положения минимумов параболических потенциалов – значения $a_{\pm} = \pm a$ (см. вкладку на рис. 1). То-

Рис. 1. (Цветной онлайн) Семейство временных зависимостей координаты частицы, совершающей возвратнопоступательное движение за счет детерминистического переключения в моменты времени $t = n\tau/2$ (n – целое) сдвинутых на расстояние 2a параболических потенциальных профилей (верхняя вставка), для различных значений инерционного параметра $\varepsilon = 4km/\zeta^2$ и фиксированном значении частоты переключения потенциалов $\gamma \equiv \tau^{-1}$ в единицах $\gamma_0 \equiv k/\zeta$

гда уравнение (9) и дополнительные условия к нему записываются как

$$\ddot{x}_{\pm}(t) + 2\lambda \dot{x}_{\pm}(t) + \omega_0^2 [x_{\pm}(t) \mp a] = 0, \quad t \in [0, \tau/2],$$
$$x_{\pm}(\tau/2) = x_{\mp}(0), \quad \dot{x}_{\pm}(\tau/2) = \dot{x}_{\mp}(0), \quad (11)$$

где $\dot{x}_{\pm}(t)$ и $\ddot{x}_{\pm}(t)$ обозначают первую и вторую производные функций $x_{\pm}(t)$ по времени, $\lambda \equiv \zeta/2m$ – коэффициент затухания (половина обратного времени релаксации скорости к распределению Максвелла), $\omega_0^2 \equiv k/m$ – квадрат частоты колебаний частицы в параболическом потенциале в отсутствие трения. Дифференциальное уравнение (11) описывает апериодические или затухающие колебания [23], и его общее решение может быть представлено в виде следующей линейной комбинации двух функций времени, обозначаемых далее c(t) и s(t):

$$x_{\pm}(t) = \pm a + C_{\pm}c(t) + S_{\pm}s(t)$$

$$c(t) \equiv e^{-\lambda t} \cosh(\lambda t\delta), \quad s(t) \equiv \delta^{-1} e^{-\lambda t} \sinh(\lambda t\delta), \quad (12)$$
$$\delta \equiv \sqrt{1-\varepsilon}, \quad \varepsilon \equiv \omega_0^2 / \lambda^2.$$

Безразмерный параметр ε пропорционален массе частицы и описывает меру инерционности рассматриваемого движения. При $\varepsilon \leq 1$ функции c(t) и s(t)вещественны, и имеет место так называемое апериодическое затухание, причем при $\varepsilon = 1$ реализуется его особый случай с $c(t) = e^{-\lambda t}$ и $s(t) \equiv \lambda t e^{-\lambda t}$. При $\varepsilon > 1$ имеем $\delta = i\delta$, $\tilde{\delta} \equiv \sqrt{\varepsilon - 1}$ и функции c(t) и s(t) записываются в виде $c(t) = e^{-\lambda t} \cos(\lambda t \tilde{\delta})$ и $s(t) = \delta^{-1} e^{-\lambda t} \sin(\lambda t \tilde{\delta})$, то есть описывают затухающие колебания. Произвольные коэффициенты C_{\pm} и S_{\pm} можно найти с помощью приведенных в (11) дополнительных условий. Итоговое решение имеет вид:

$$x_{\pm}(t) \underset{t \in [0, \tau/2]}{=} x_{\pm}(t) = \sum_{t \in [0, \tau/2]} x_{\pm}(t) = \sum_{t \in [0, \tau/2]}$$

Для того, чтобы наглядно представить изменение координаты x(t) частицы со временем на периоде τ процесса, примем $x(t) = x_-(t)$ при $t \in [0, \tau/2]$ и $x(t) = x_+(t - \tau/2)$ при $t \in [\tau/2, \tau]$. Тогда из формулы (13) следует, что периодическая функция x(t)характеризуется свойством $x(t + \tau/2) = -x(t)$, относящим ее к классу функций, обладающих сдвиговой симметрией [24] (суперсимметричным функциям в терминологии работ [1,25]). Характерные виды законов движения x(t) при различных значениях параметра ε изображены на рис. 1.

В отсутствие инерции $(m=0,\varepsilon=0),$ что означает режим сверхзатухания, $c(t)=s(t)=e^{-\gamma_0 t}/2~(t\neq 0)$ и

$$x_{\pm}(t)_{t \in [0,\tau/2]} = \pm a \left(1 - 2 \frac{e^{-\gamma_0 t}}{1 + e^{-\gamma_0 \tau/2}} \right), \quad \gamma_0 \equiv \frac{k}{\zeta}.$$
(14)

Отсюда следует, что наибольшие абсолютные значения координат $x_{\pm}(t)$ достигаются на границе: $x_{\pm}(\tau/2) = \lim_{t\to 0} x_{\pm}(t) = \pm a \tanh(\gamma_0 \tau/4)$, причем в граничных точках сама функция x(t) непрерывна, но ее производная $\dot{x}(t)$ претерпевает скачки – не соблюдается дополнительное условие непрерывности скорости в режиме сверхзатухания.

При учете инерции граничные значения $x_{\pm}(0)$ и $x_{\pm}(\tau/2)$, по-прежнему не являясь экстремумами функции c(t), перестают быть и ее наибольшими абсолютными значениями, поскольку именно инерция ответственна за сохранение направления движения в моменты переключения потенциалов. С ростом значения параметра ε абсолютные величины граничных значений $x_{\pm}(0)$ и $x_{\pm}(\tau/2)$ уменьшаются, амплитуда экстремумов функции также уменьшается, а положения экстремумов сдвигаются к моментам времени $t = \tau(1+2n)/4$ (n – целое).

Средняя скорость возвратно-поступательного движения, определенная из соотношения (8) как $V \equiv |\langle v_{\pm} \rangle|$, равна:

$$V = 2\tau^{-1}|x_{\pm}(0)| = \frac{2a}{\tau} \cdot \frac{1 - 2s - e^{-\lambda\tau}}{1 + 2c + e^{-\lambda\tau}},$$
 (15)

где мы использовали равенства $x_{\pm}(0) = x_{\mp}(\tau/2) = -x_{\pm}(\tau/2)$. Введем далее частоту γ переключения потенциалов как величину, обратную периоду процесса τ , и рассмотрим зависимость $V(\gamma)$ (рис. 2). При

Рис. 2. (Цветной онлайн) Зависимость средней скорости возвратно-поступательного движения мотора V (в единицах $2\gamma_0 a$) для детерминистического (сплошные кривые) и стохастического (пунктирные кривые) дихотомного процесса переключения потенциальных профилей от величины отношения частоты флуктуаций параболического потенциала γ к параметру $\gamma_0 = k/\zeta$ при различных значениях инерционного параметра $\varepsilon =$ $= 4km/\zeta^2$. На вставке в увеличенном масштабе изображены кривые с $\varepsilon = 12$ в низкочастотной области

апериодическом затухании ($\varepsilon \leq 1$) равновесное распределение по скоростям (распределение Максвелла) устанавливается достаточно быстро, тогда как равновесное распределение по координатам (распределение Больцмана) устанавливается существенно дольше – за время, характеризуемое параметром релаксации $\gamma_0^{-1} = \zeta/k$. Величина γ_0 – удобный естественный масштаб для задания частоты переключения потенциалов. При малых значениях безразмерного частотного параметра $\gamma/\gamma_0 \ll 1$ в каждом

t

из потенциальных профилей успевает установиться термодинамическое равновесие, а среднее значение координаты частицы совпадает со значением положения минимума потенциала $(x_{+}(\tau/2) = \pm a)$. Тогда средняя скорость есть $V = 2a/\tau$ (что следует как из общих соображений, так и из правой части формулы (15)). Таким образом, низкочастотные асимптотики функции $V(\gamma)$ независимо от значения инерционного параметра ε одинаковы и пропорциональны γ .

Высокочастотное поведение функции (15) различается при отсутствии ($\varepsilon = 0$) и учете ($\varepsilon \neq 0$) инерции. В первом (безынерционном) случае V = $= 2a\gamma \tanh(\gamma_0/4\gamma)$, и средняя скорость, монотонно возрастая, выходит на насыщение $V \rightarrow a\gamma_0/2$ при $\gamma \rightarrow \infty$. Аналогичный монотонный характер зависимости $V(\gamma)$ отмечался и для возвратнопоступательного мотора, функционирующего за счет стохастических флуктуаций в режиме сверхзатухания [14, 19–21]. При $\varepsilon \neq 0$, разложение выражения (15) по малому параметру $\lambda \tau = 2\gamma_0/(\varepsilon \gamma)$ дает следующую высокочастотную асимптотику $V(\gamma) \approx$ $\approx a\gamma_0^3/(6\varepsilon^2\gamma^2)$, которая демонстрирует стремление скорости к нулю при $\gamma \rightarrow \infty$. Таким образом, стремление функции $V(\gamma)$ к нулю как при малых $(\gamma \rightarrow 0)$, так и при больших $(\gamma \rightarrow \infty)$ частотах означает ее немонотонность. При апериодическом затухании существует один максимум на частоте $\gamma/\gamma_0 \sim 1$. При затухающих колебаниях из-за возникновения резонансных эффектов возможно существование нескольких максимумов функции $V(\gamma)$. Например, кривая, соответствующая $\varepsilon = 12$, кроме высокого пика на частоте $\gamma/\gamma_0 \approx 0.09$ имеет также и низкий слабовыраженный пик при $\gamma/\gamma_0 \approx 0.03$ (см. вставку на рис. 2).

Описание моторов, движимых стохастическим дихотомным процессом переключения состояний, отличается от детерминистического случая тем, что в уравнение Клейна-Крамерса (1) вводятся дополнительные слагаемые, учитывающими скорости прихода и ухода частицы, γ_{\pm} , в одно состояние из другого (так называемые источники и стоки), так что среднее время пребывания частицы в состоянии "±" равно γ_{\pm}^{-1} [26]. Для симметричного процесса γ_{+} = $= \gamma_{-} = 2\gamma$, где γ – частота флуктуаций, равная обратному среднему периоду процесса τ . Аналогично случаю детерминистического процесса, при стохастическом процессе равновесные и неравновесные флуктуации оказываются не связанными между собой для параболических потенциалов, что облегчает решение и приводит к следующему выражению для средней скорости возвратно-поступательного движения: $V = 2a\gamma [1 + 4(\gamma/\gamma_0)(1 + \varepsilon\gamma/\gamma_0)]^{-1}$. На рисунке 2

Письма в ЖЭТФ том 116 вып. 11-12 2022 эти зависимости $V(\gamma)$ изображены пунктирными линиями, которые при $\varepsilon \neq 0$ представляют собой широкие колоколообразные кривые с асимтотическим поведением $V(\gamma) \approx a \gamma_0^2 / (2 \varepsilon \gamma)$ в области высоких частот, которое отличается от высокочастотной асимптотики для детерминистического случая. Слабовыраженный пик при $\gamma/\gamma_0 \approx 0.03$, наблюдавшийся в детерминистической модели, в стохастической - отсутствует.

Для анализа резонансных процессов удобно измерять частоту переключения потенциалов γ в единицах собственной частоты колебаний частицы $\omega_0 \equiv$ $\equiv \sqrt{k/m}$. Тогда возникающие при $\varepsilon \gg 1$ резонансы будут хорошо видны на шкале $\gamma/\omega_0 = (\sqrt{\varepsilon}/2)(\gamma/\gamma_0)$ (рис. 3). Положения и высоты пиков можно найти,

Рис. 3. (Цветной онлайн) Зависимость средней скорости возвратно-поступательного движения мотора V (в единицах $2\omega_0 a, \, \omega_0 = \sqrt{k/m}$) для детерминистического процесса переключения потенциальных профилей от отношения частоты флуктуаций параболического потенциала γ к параметру ω_0 при $\varepsilon = 100$. На вставке закон движения при $\varepsilon=100$ и $\gamma/\omega_0=2~(\gamma/\gamma_0=0.4)$

получив асимптотику выражения (13), соответствующую $\varepsilon \gg 1$. Приведем такой предельный результат для системы, в которой отсутствует трение ($\zeta = 0$, $\lambda = 0, \varepsilon \to \infty$):

$$x_{\pm}(t) \underset{t \in [0, \tau/2]}{=} \pm a \left[1 - \frac{\cos \omega_0(t - \tau/4)}{\cos(\omega_0 \tau/4)} \right].$$
(16)

Значения частот, на которых возникает резонанс, можно вычислить из условия обращения знаменателя дроби (16) в нуль:

$$\frac{\gamma}{\omega_0} = \frac{1}{2\pi(1+2n)}, \quad n = 0, 1, \dots$$
 (17)

Подстановка этих значений частоты в выражение для средней скорости возвратно-поступательного мотора (15) при $\varepsilon \gg 1$ дает резонансное значение скорости:

$$V_{\max} \approx \frac{a\omega_0}{\pi(1+2n)} \coth \frac{\pi(1+2n)}{2\sqrt{\varepsilon}} \approx \frac{2a\omega_0\sqrt{\varepsilon}}{\pi^2(1+2n)^2}$$
(18)

(второе приближенное равенство справедливо при $n \ll \sqrt{\varepsilon}$). При $\varepsilon \to \infty$ высоты резонансных пиков $V_{\rm max}$ стремятся к бесконечности, как и должно быть для резонансных процессов в отсутствие диссипации энергии. Отметим, что из соотношения (16) следует равенство $x_{\pm}(0) = x_{\pm}(\tau/2) = 0$ (см. вставку на рис. 3), следовательно, средняя скорость также равна нулю в отсутствие трения. Справедливость этого результата следует из того, что, поскольку величина V характеризует эффективность преобразования энергии частицы, получаемой от переключений потенциалов, в энергию возвратно-поступательного движения, а переключение потенциалов при $x_+(0) = x_-(0)$ и $x_+(\tau/2) = x_-(\tau/2)$ не изменяет энергию частицы, то V = 0.

В данной статье предложен общий подход, позволяюший учитывать инерционные эффекты при описании функционирования возвратнопоступательных наномашин с детерминистическими дихотомными флуктуациями параметров. В отличие от стохастических флуктуаций параметров инерционного броуновского мотора [26], рассмотрение детерминистических флуктуаций позволяет изучить особенности законов движения инерционных частиц и резонансные явления, а также является актуальным прежде всего для разработки моделей искусственных наноустройств. Описание допускает различные значения массы частицы и коэффициента трения, а также параметров потенциальной энергии частицы в двух состояниях, переключающихся с произвольной частотой. Наиболее просто такие модели переключения состояний могут быть реализованы оптическими методами, которые позволяют фиксировать положения частиц удерживающими потенциалами (оптические ловушки) [3, 27–29] или изменять их коэффициенты трения путем изменения размера частиц [30-32]. Масса объектов, вовлеченных в движение, может изменяться за счет химических реакций, происходящих на их поверхности в жидких средах [33–35]. Различие коэффициентов вязкого трения в двух состояниях при возвратно-поступательном движении частицы в жидкой среде может приводить к выпрямлению этого движения в направленное (рэтчет-эффекту) [12-14]. Скорость поступательного движения такого рэтчета пропорциональна скорости возвратно-поступательного движения, а коэффициент пропорциональности зависит от механизма выпрямления, в котором принципиально важна асимметрия флуктуаций параметров частицы (в частности, асимметрия флуктуаций трения, как показано в работах [14, 19] для безынерционных моторных систем). В высокочастотном пределе скорость рэтчета должна стремиться к нулю [1], поэтому скорость возвратно-поступательного движения в таких наномашинах должна демонстрировать аналогичное высокочастотное поведение. Известные модели возвратно-поступательных броуновских моторов, функционирующих в режиме сверхзатухания, имеют ненулевой высокочастотный предел скорости [14, 19]. Конечно, возможны модели, в которых сам механизм, выпрямляющий возвратнопоступательное движение (рэтчет-механизм), имеет частотную зависимость флуктуаций параметров, которая обратит скорость рэтчета в нуль в высокочастотном пределе. Однако представляют интерес более стандартные модели, в которых сама скорость возвратно-поступательного движения имеет правильный предел, что позволяет понизить требования к характеристикам выпрямляющих механизмов. Модель, обладающая указанным свойством, предложена и исследована в настоящей статье. Получено, что правильный высокочастотный предел реализуется именно за счет учета инерции частицы, поскольку при высоких частотах период флуктуаций потенциала становится сравнимым с характерным временем релаксации в фазовом пространстве скоростей, стремящемся к нулю при уменьшении инерционного вклада.

Для иллюстрации деталей инерционнообусловленного поведения возвратнопоступательных моторных систем, была выбрана простая модель, в которой параболический потенциал испытывал исключительно флуктуации сдвига. Параболическая форма потенциалов обеспечила отсутствие связи равновесных и неравновесных флуктуаций, что существенно упростило результаты, поскольку отсутствовал вклад теплового шума в среднюю скорость возвратно-поступательного движения частицы. В безынерционном режиме (сверхзатухания) в законе движения частицы в моменты сдвигов потенциала возникали нефизические скачки скорости, а средняя скорость ее возвратно-поступательного движения была монотонно возрастающей функцией частоты, с которой происходили сдвиги. Описание с учетом конечности массы частицы позволило получить непрерывную зависимость скорости частицы от времени и немонотонную частотную зависимость средней скорости

869

фон-

(Проект

возвратно-поступательного движения с правильной (нулевой) высокочастотной асимптотикой (рис. 1 и 2).

Отметим, что выбор параболической формы потенциальной энергии наночастицы оправдан в той же степени, в какой параболические профили используются в моделях многих физических процессов: малые колебания вблизи минимумов гладких потенциальных рельефов хорошо аппроксимируются гармоническими колебаниями, допускающими получение аналитического решения многочисленных моделей различных систем. В то же время, при отличии формы потенциалов от параболической часть полученных результатов должна быть модифицирована. Например, в работе [21] рассматривались сдвиговые флуктуации потенциальных энергий $U_{\pm}(x)$, которые при больших x вели себя как x^{α} . Было показано, что в зависимости от значения параметра α тепловой шум может как увеличивать (при $\alpha > 2$), так и уменьшать (при $\alpha < 2$) скорость возвратнопоступательного безынерционного броуновского мотора, т.е. играть конструктивную или деструктивную роль, соответственно. Естественно ожидать, что такие же закономерности сохранятся и при учете инерции. При $\alpha = 2$ тепловой шум играл нейтральную роль, как и в рассмотренном в данной статье примере инерционного мотора с флуктуирующим параболическим потенциалом.

Переход от детерминистических к стохастическим сдвиговым флуктуациям параболического потенциального профиля не изменяет вывода о том, что учет инерции приводит к переходу от монотонной зависимости скорости возвратнопоступательного движения Κ немонотонному. Отличие состоит только в том, что стохастические зависимости описываются более широкими колоколообразными кривыми и спадают с ростом частоты флуктуаций γ гораздо медленнее (как γ^{-1} , а не как γ^{-2} , см. рис. 2).

Учет инерции при детерминистическом дихотомном процессе позволил также выявить резонансы в частотной зависимости скорости возвратнопоступательного движения, возможные при малых значениях коэффициента трения (рис. 3). В случае параболических потенциалов с силовой постоянной k, минимумы которых периодически сдвигаются на расстояние а, возмущение представляет собой периодическое изменение величины внешней силы $\pm ka$, которая резонирует на частоте переключения и ее нечетных кратных с гармоническим осциллятором. В общем случае возвратно-поступательной наномашины, описываемой уравнениями (1)–(3), (6)–(9),

ной особенностью этих наномашин, поскольку именно в резонансном режиме интенсивность возвратнопоступательного движения мотора наибольшая. Работа была поддержана субсидией Мининауки и высшего образования Росстерства сийской Федерации в рамках государственного задания #122040500071-0 и Российским дом фундаментальных исследований

#21-57-52006 MNT a).

- 1. P. Reimann, Phys. Rep. 361, 57 (2002).
- 2. P. Hänggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009).

со временем могут изменяться и другие парамет-

ры частицы (масса, коэффициент трения, параметры

потенциальной энергии), что может приводить к параметрическому резонансу [23, 36]. Отметим, что су-

ществование резонансов является интересной и важ-

- 3. D. Cubero and F. Renzoni, Brownian Ratchets: From Statistical Physics to Bio and Nano-motors, Cambridge University Press, Cambridge (2016).
- 4. O. Kedem, B. Lau, M. A. Ratner, and E. A. Weiss, Proc. Natl. Acad. Sci. USA 114, 8698 (2017).
- 5. Ю.В. Гуляев, А.С. Бугаев, В.М. Розенбаум, Л.И. Трахтенберг, Успехи физических наук **190**(4), 337 (2020).
- 6. J.A. Fornes, Principles of Brownian and Molecular Motors, Springer, Cham (2021).
- 7. M. L. Dekhtyar, A. A. Ishchenko, and V. M. Rozenbaum, J. Phys. Chem. B 110, 20111 (2006).
- 8. S. Saha and J.F. Stoddart, Chem. Soc. Rev. 36, 77 (2007).
- 9. Y.B. Zheng, H. Qingzhen, Y.-W. Yang, B. Kiraly, I.-K. Chiang, and T.J. Huang, J. Nanophotonics 4, 042501 (2010).
- 10. V. M. Rozenbaum, M. L. Dekhtyar, S. H. Lin, and L.I. Trakhtenberg, J. Chem. Phys. 145, 064110 (2016).
- 11. T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis, S. R. Harutyunyan, K.-H. Ernst, and B.L. Feringa, Nature 479, 208 (2011).
- 12. A. Mogilner, M. Mangel, and R. J. Baskin, Phys. Lett. A 237, 297 (1998).
- 13. H.C. Fogedby, R. Metzler, and A. Svane, Phys. Rev. E 70, 021905 (2004).
- 14. Yu.A. Makhnovskii, V.M. Rozenbaum, D.-Y. Yang, S.H. Lin, and T.Y. Tsong, Eur. Phys. J. B 52, 501 (2006).
- 15. T. Hugel, N.B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, Science 296, 1103 (2002).
- 16. A.I. Vedernikov, N.A. Lobova, L.G. Kuz'mina, J.A.K. Howard, Yu.A. Strelenko, M.V. Alfimov, and S.P. Gromov, J. Mol. Struct. 989, 114 (2011).

- N.Kh. Petrov, D.A. Ivanov, Yu.A. Shandarov, I.V. Kryukov, A.A. Ivanov, M.V. Alfimov, N.A. Lobova, and S.P. Gromov, Chem. Phys. Lett. 647, 157 (2016).
- В. М. Розенбаум, М. Л. Дехтярь, И. В. Шапочкина, Л. И. Трахтенберг, Письма в ЖЭТФ 113, 768 (2021).
- Yu. A. Makhnovskii, V. M. Rozenbaum, D.-Y. Yang, and S. H. Lin, J. Chem. Phys. **130**, 164101 (2009).
- V. M. Rozenbaum, Yu. A. Makhnovskii, D.-Y. Yang, S.-Y. Sheu, and S. H. Lin, J. Phys. Chem. B **114**, 1959 (2010).
- Yu. A. Makhnovskii, V. M. Rozenbaum, S.-Y. Sheu, D.-Y. Yang, L. I. Trakhtenberg, and S. H. Lin, J. Chem. Phys. **140**, 214108 (2014).
- H. Riskin, The Fokker-Plank Equation. Methods of Solution and Applications, Springer-Verlag, Berlin (1989).
- Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, Том. 1, Механика, 3-е изд., испр. и доп., Наука, М. (1973).
- В. М. Розенбаум, И.В. Шапочкина, Е. Тераниши, Л.И. Трахтенберг, Письма в ЖЭТФ 107, 525 (2018)
 [V. M. Rozenbaum, I. V. Shapochkina, Y. Teranishi, and L. I. Trakhtenberg, JETP Lett. 107, 506 (2018)].

- 25. P. Reimann, Phys. Rev. Lett. 86, 4992 (2001).
- 26. Т. Е. Корочкова, И. В. Шапочкина, В. М. Розенбаум, Поверхность **6**(21), 18 (2014).
- 27. L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan, and A.J. Libchaber, Phys. Rev. Lett. **74**, 1504 (1995).
- S.-H. Lee, K. Ladavac, M. Polin, and D. G. Grier, Phys. Rev. Lett. 94, 110601 (2005).
- R. Gommers, S. Bergamini, and F. Renzoni, Phys. Rev. Lett. 95, 073003 (2005).
- D. Shi, M. Matsusaki, T. Kaneko, and M. Akashi, Macromolecules 41, 8167 (2008).
- H.-J. Zhang, Y. Xin, Q. Yan, L.-L. Zhou, L. Peng, and J.-Y. Yuan, Macromol. Rapid Commun. 33, 1952 (2012).
- В. Ю. Зицерман, Ю. А. Махновский, Л.И. Трахтенберг, Д. Е. Янг, Ш.К. Лин, Письма в ЖЭТФ 105, 315 (2017) [V. Yu. Zitserman, Yu. A. Makhnovskii, L. I. Trakhtenberg, D.-Y. Yang, and S. H. Lin, JETP Lett. 105, 335 (2017)].
- 33. S. Leibler, Nature (London) **370**, 412 (1994).
- 34. R. D. Astumian, Science 276, 917 (1997).
- 35. F. Marchesoni, Phys. Lett. A 237, 126 (1998).
- 36. M. Gitterman, *The noisy pendulum*, illustrated edition, World Scientific Publishing Company, Singapore (2008).