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Topological Josephson junction in transverse magnetic field
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We consider an S-TI-S Josephson junction between
two s-wave superconducting (S) electrodes on top of a
topological-insulator (TI) material in transverse mag-
netic field, Fig. 1. Majorana zero modes (MZM’s) reside
at periodically located nodes of Josephson vortices. We
find that hybridization of these modes is prohibited by
symmetries of the problem at vanishing chemical poten-
tial, which ensures better protection of zero modes and
yields methods to control the tunnel coupling between
Majorana modes for quantum information processing
applications.

Topologically-protected quantum manipulations
with Majorana zero modes are extensively studied
theoretically and experimentally due to their exotic
properties, including exchange statistics, and their
possible use in platforms for topological quantum com-
putation [1–3]. In particular, hybrid superconductor-
topological insulator structures were discussed. Fu
and Kane analyzed a topological Josephson junction
between superconductor films on top of a topological
insulator [4, 5] and demonstrated the appearance of
Majorana edge states. Here we consider a setup where
Majorana bound states are point-like structures bound
to Josephson vortices in an external magnetic field
perpendicular to the surface [6]. Such devices were
discussed as a platform for topological quantum compu-
tation [7]. We find that the tunnel coupling between the
MZM’s vanishes at zero chemical potential. This should
be taken into account in the design of experiments with
MZM’s on Josephson vortices and also suggests that
coupling and hybridization of various MZM’s may be
controlled, in particular, via the chemical potential.
Note similar observations for a 2D vortex lattice [8].

Due to proximity effect, superconducting correla-
tions are induced in the surface layer of the topo-
logical insulator. The states in this layer can be de-
scribed by the Bogolyubov–de-Gennes (BdG) Hamilto-
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Fig. 1. (Color online) Top: S-TI-S Josephson junction in a
transverse magnetic field ‖ ẑ. Blue and orange spots indi-
cate location of Majorana bound states. Bottom: Eigenen-
ergies ǫn(φ) of h0 for W = 6.0ξ
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with the Pauli matrices σ and τ referring to the spin
and Bogolyubov–Nambu particle-hole space, respec-
tively. For the distribution of the transverse magnetic
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field H = Hẑ around the gap of width W between
the superconducting electrodes, we choose the gauge
with ∆ = ∆0e

±iφ/2 in the leads with the phase φ(y) =
= (2λL +W )H0

2π
Φ0
y, Fig. 1. We assume that the cor-

responding magnetic length lB = [(2λL +W )H0/Φ0]
−1

exceeds the relevant coherence length ξ = ~v/∆0.
Properties of the solutions are to large extent de-

termined by symmetries of the Hamiltonian. They in-
clude the particle-hole symmetry C = σyτyK, which
inverts energies: C−1hC = −h. Further, for µ = 0,
the case of our special interest below, there is a (quasi)
time-reversal symmetry T = σxτxK, with T−1hT = h,
and T 2 = 1. Their product defines the chiral symmetry
S = σzτz . Finally, an extra symmetry operator,

F = σxτxIx , (2)

is defined via the x inversion Ix.
We split the Hamiltonian into

h0(y) = −i~v σx τz∂x + [∆(x, y)τ+ + h.c.]− µτz (3)

and
h1 = v σy

[

−i~∂y +
e

c
Ay(x)τz

]

τz , (4)

and first diagonalize h0 for each value of y (or φ):

ĥ0(y)|ν〉y = ǫν(y)|ν〉y (5)

or equivalently, ĥ0(φ)|ν〉φ = ǫν(φ)|ν〉φ. Later, we take
h1 into account, which glues these 1D states into 2D
wave functions.

The resulting eigenstates are classified by the eigen-
values of the symmetry operators F (blue, F = 1, and
orange, F = −1, color in the figures) and σx, an ex-
tra symmetry of h0. The respective spectrum ǫν , cf.
Fig. 1, depends on φ (or y), and has zero modes [4] at
φ = π + 2πn:

[1, σx, σxF, F ]
T · e−

∫ |x|
0

|∆(x′)|dx′

(6)

with F = (−1)n (note another gauge used in [4]). We
mark an eigenstate ǫν(y) of h0 with ν = (n,±), where
± = −σx is the sign of its slope.

We further work in the eigenbasis (5) of h0, in con-
trast to [4]. First, we account for the kinetic part hkin of

h1 and then treat the remaining h̃1 perturbatively. Since
hkin couples only the levels within each charge conjugate
pair n±, the BdG equation factorizes into 2 × 2 equa-
tions with

heff = −ivρy∂y + ǫn(y)ρz . (7)

Here ρ are a new set of Pauli matrices in the basis n±.
The energy ǫn vanishes at coordinates y = yn with

phase φ(yn) = π + 2πn. Around this point we linearize
ǫn(y) = α (y− yn) and obtain an exactly solvable [6, 7]

heff = −ivρy∂y + α (y − yn)ρz (8)

with α ∝ ∂yφ. This equation has a zero mode near yn
and a set of “Landau levels”. In the regime we consider,
lB ≫ ξ, many Landau levels fit below the gap ∆0.

Taking into account h̃1 may tunnel-couple zero
modes at different nodes φ = π + 2πn, pushing them
away from zero energy. We showed that this is not the
case, and at µ = 0 the modes remain at zero energy,
forming a flat band, cf. [8] for a 2D vortex lattice.

Indeed, from Eq. (8) one observes that the zero mode
at each node, |n+〉+S|n−〉, is chiral with the same chi-
rality S = σzτz = −signα for all nodes. We showed
that adding h̃1 does not alter this property. While the
zero modes remain decoupled, other levels near a cer-
tain node can be perturbed due to coupling to another
node.

Our result is in agreement with the general classifi-
cation of zero modes [9], which implies that the number
of MZM’s is topologically protected and given by the to-
tal phase drop accumulated around the defects within
the Josephson junction.

Coupling between the MZM’s in this setting was sug-
gested as a method to braid them [7], which would allow
for topologically protected quantum operations. While
the coupling vanishes at µ = 0, a finite coupling may
be achieved for µ 6= 0, which also permits controlling its
strength.

Furthermore, finite coupling can be realized if two
MZM’s have different chiralities. Since the chirality
depends on the sign of the magnetic field (signα in
Eq. (8)), this can be effected with a nonuniform mag-
netic field distribution: for instance, with a “domain
wall” of H(y) = H0sign y or an oscillatory H(y).
The corresponding structures would allow for controlled
quantum operations with Majorana modes.
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