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During the last decades transition metal compounds

have attracted much attention because of their intrigu-

ing low-temperature electronic and magnetic proper-

ties [1–3]. Many of them display complex types of spin,

charge, and orbital orderings which are often accom-

panied by metal-insulator phase transitions driven by

strong electron correlation effects [1–3]. In addition,

the specific orbital ordering (OO) may result in the

formation of the orbital-assisted spin Peierls state as,

e.g., in CuIr2S4 and MgTi2O4 below the metal-insulator

transition [4–6]. In La2RuO5 the competition between

the Peierls-like and Jahn–Teller effects results in a re-

markable insulator-to-insulator phase transition below

∼ 160 K accompanied by the formation of the spin-

singlet ground state [7].

While all these examples show either magnetic or

nonmagnetic spin-singlet behaviors, it seems to be a

rather rare phenomenon that a long-range magnetic or-

der coexists with nonmagnetic spin-singlet states (at

distinct sublattices). This remarkable behavior has been

proposed in the low-temperature (LT) monoclinic phase

of V6O13, a member of a homologous Wadsley series

VmO2m+1 and potential cathod material for Li-ion bat-

teries. It is a mixed-valent system with both 4+ and 5+

V ions with a corresponding ratio 2-to-1, is a paramag-

netic metal with a 2D layered crystal structure (C2/m

space group) and three cristallographycally inequiva-

lent vanadium sites [8]. At ∼ 150 K, a first-order metal-

insulator transition sets in V6O13 which is accompanied

by a crystal structure distortion to the monoclinic Pc

phase and by a remarkable decrease of magnetic sus-

ceptibility [9, 10]. The phase transition at 150 K was in-

terpreted as charge ordering at which the half of V4+

ions form spin-singlet pairs. The remaining V4+ ions

are paramagnetic and order antiferromagnetically (AF)

upon cooling below ∼ 55 K.
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In our paper, we study of the electronic struc-

ture, charge-orbital ordering, and magnetic properties

[11, 12] of LT V6O13 [8, 9] using the DFT and DFT +U

(with the Hubbard U = 3.75 eV and Hund’s exchange

J = 0.9 eV) band-structure calculations [13, 14]. We ob-

tain that the V ions in double layers formed by the

V2a/V3a and V2b/V3b ions are aligned ferromagnet-

ically with magnetic moments of −0.14/− 0.84µB and

0.11/0.86µB, respectively, while the layers are stacked

AF along the a-axis. Moreover, the V1a and V1b sites

are AF with spin moments of 0.86 and −0.85µB, respec-

tively. In agreement with photoemission data [15, 16],

the DFT +U calculations result in an opening of the

energy gap of 0.2 eV. The occupied V 3d states are

strongly localized and form two well defined bands be-

low the Fermi level and in the energy range between −2

and −0.6 eV, consistent with the recent ARPES results

[15, 16].

We note that the self-consistent solution obtained

by DFT +U is charge and orbitally ordered. The in-

tegrated charge state of the V 3d bands in the energy

range between −2 eV and the Fermi level indicates for-

mation of the t2g charge and orbital ordered state in

which one of the V1 and V3 ions each has one t2g or-

bital occupied, whereas all the V2 t2g orbitals are empty.

According to this we label the V1 and V3 as 4+ (3d1),

and V2 as 5+ (3d0) V ions. This suggests that the bands

near EF are derived from the zigzag chains with mixed

4+ and 5+ V sites [15, 16]. Moreover, the V 3d occu-

pations exhibit the dxz↑/dxy↓ character for the occu-

pied V1a/V1b ions which are almost completely filled

with the occupation number of ∼0.8 (see Fig. 1). The

occupied V3a/V3b states are predominantly of the dyz
character with population of 0.8 ē. On the other hand,

the remaining two t2g orbitals of the V1 and V3 ions

have a significantly smaller population of about 0.2. In

contrast, the V2a/V2b 3d orbitals do not reveal any or-

bital polarization. Moreover, the V2a/V2b t2g orbital
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Fig. 1. (Color online) Lattice structure and orbital or-
der projected on the (100) plane of LT V6O13. Red and
blue colors correspond to the majority and minority spin,
respectively

occupancies do not exceed 0.27 resulting in a remark-

able charge disproportionation within the t2g subshell

between the V1/V3 and V2 ions. Interestingly that due

to considerably larger hybridization between the O 2p

and V2a/V2b 3d states the corresponding 3d charge dis-

proportionation inside the atomic spheres of the V1/V3

and V2 ions is rather small, consistent with previous

estimates for charge-ordered transition metal oxides.

Our analysis of exchange couplings of LT V6O13

(using the Green’s function method within DFT +U)

[14] suggests a relatively weak interlayer coupling, less

then 85 K between the V1–V2 sites. In the double V-V

layer (x = ±a/4) the exchange couplings in the zigzag

chain (along the b-axis) are rather weak and ferromag-

netic (∼ 20–30 K), whereas the inter-chain exchanges are

remarkably large and dominant (∼ 220–348 K). In the

single layer the V 4+ ions form a sawtooth-like spin-

1/2 zigzag chains along the b-axis which are (relatively)

weakly coupled to each other. The base-base exchange

coupling in the ∆-chain between the dxy orbitals (fer-

roorbitally ordered) on the neighboring V1b sites is large

and AF (∼ −420K). Its amplitude is considerably larger

than the mean base-vertex coupling (∼ −280K), i.e.,

a ratio between the base-base and mean base-vertex

couplings in the V1 ∆-chain is smaller than the upper

critical value of 1.53, below which the spin gap state

occurs in the sawtooth lattice [17]. Based on this we

conclude on the formation of the orbital-assisted spin-

Peierls state in the single V-V layer of the system [18].

Our result agrees well with the analysis of the crystal

structure below the phase transition at 150 K.
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