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Transfer of the soliton-comb concept established for

χ(3) microresonators [1, 2] to χ(2) resonators represents

an important problem [3, 4]. Within this concept, a dual

FH-SH soliton propagates in a pumped resonator with

velocity v0 due to cascaded SH generation and OPO

processes. The pump wavelength λp satisfies phase-

matching conditions, and the soliton is dissipative – it

balances not only dispersion broadening and nonlinear

compression, but also gain and losses. Minimization of

the FH-SH group velocities difference is crucial [4]; the

radial poling of the resonator can be used to get it [5].

Nonlinear equations governing the dependence of FH

and SH envelopes (F and S) on the azimuth angle ϕ

and time t are known [3, 4]. Two schemes with pump-

ing into a FH (or SH) resonator mode are envisaged.

For the FH pumping, both F and S are 2π-periodic in

ϕ. In the SH pumping case, also topologically different

antiperiodic solutions with F (ϕ, t) = −F (ϕ+2π, t) and

S(ϕ, t) = S(ϕ+2π, t) are allowed [4]. To realize the pe-

riodic (P) and antiperiodic (A) states, it is necessary to

pump SH modes with even and odd azimuth numbers.

Single-soliton P-states in χ(2) resonators were

demonstrated numerically at the zero walk-off point [3].

The found solitons are locally stable, but not easily

accessible. More recently, the existence of single-soliton

A-states was established [4]. These states were found

to be accessible upon switching the pump on. Neither

analytical examples of the χ(2) solitons, nor general

numerical methods for their search are known so

far. Experimentally, the necessary zero walk-off point

vicinity is not realized – solitons detected in χ(2)

resonators [6] are due to Kerr nonlinearity.

We offer a regular method for the search of sta-
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ble and accessible χ(2) soliton-comb solutions. It al-

lows us to get new single- and multi-soliton states and

to demonstrate multistability of different regimes. It is

based on a strong link between the spatial properties

of near-threshold and well-above-threshold steady-state

solutions for F and S. The first ones include typically

not many significant FH and SH modes. Applying nu-

merical procedure of adiabatically slow rise of the pump

power and increasing the number of modes, it is possible

to get numerous developed soliton-comb states. These

states are new, stable and accessible.

Specifically, we employ instead of F , S their normal-

ized Fourier harmonics fj, sl. In the SH pumping case,

they obey evolutional nonlinear equations

ḟj + (1 + iδ1 + iβ1j
2)fj = −i

∑

l

slf
∗
l−j (1)

rṡl + (1 + iδ2 + iβ2l
2 − iαl)sl = ηδl,0 − i

∑

j

fjfl−j .

Here β1,2 = d1,2/γ1,2R
2 and α = (v1 − v2)/γ2R are the

normalized dispersion and walk-off coefficients, R is the

major resonator radius, γ1,2 are the decay rates for the

FH, SH modes, v1,2 and d1,2 are the known group ve-

locities and their dispersions, r = γ1/γ2, δ1,2 are the

normalized FH and SH frequency detunings, η is the

normalized pump amplitude, and the dot indicates dif-

ferentiation in the normalized time τ = γ1t. Set (1)

is written for a coordinate frame moving with velocity

v1. For mm-sized resonators, typically |β1,2| ≪ 1 and

|α| ≫ 1. The case |α| . 1 is relevant to a close vicinity of

zero walk-off point λc. The main variable parameters are

η, δ1,2, and λp. Set (1) is valid for both P- and A-cases.

In the P-case we have l, j = 0,±1,±2, . . .. In the A-case

l takes the same values, while j = ±1/2,±3/2, . . ..

Truncated set (1) was solved numerically with differ-

ent initial conditions (ICs) for the amplitudes. The total

number of FH+ SH modes ranged from 16 to 1024. Cor-

rectness of the results was verified via increasing mode
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number and decreasing time step. Establishment of the

steady state was controlled with a high accuracy [4]. To

quantify β1,2 and α in the vicinity of λc spectral point,

we set exemplarily 2πR = 1 cm, γ1,2 = 3× 107 s−1, and

used dependences v1,2(λp), d1,2(λp) relevant to LiNbO3

crystals. This gives β1 ≃ 5.3×10−3, β2 ≃ −1.44×10−3,

and α ≃ −0.13× δλ [nm].

Consider some results for the P-case at α = 0, δ2 =

0, δ1 = δ
(j)
1 = −β1j2 with j = 1. Using ICs with random

phases, such that |fj(0)| ≪ 1 and |sl(0)| ≪ 1, we arrive

after a transient stage at a steady state with |s0| ≃ 1 and

very small other harmonics. After that, we employ our

adiabatic procedure: The pump amplitude η is slightly

increased and the steady-state amplitudes fj , sl are used

as new ICs. After establishment of a new steady state,

the procedure was repeated many times. The number of

harmonics was gradually increased as well. In the whole

investigated range 1 < η ≤ 30 we obtained a continu-

ous family of nonlinear states f(η, ϕ), s(η, ϕ) that have

to be qualified as dual two-soliton states. The relative

soliton velocity v01 = v0 − v1 at α = 0 is zero, and the

absolute velocity is v1 ≃ 1.37× 1010 cm/s.

Figure 1 shows the periodic 2-soliton state for η =

20. We see from (a) and (d) that each of the inten-

sity profiles |f |2(ϕ) and |s|2(ϕ) consists of two narrow

Fig. 1. (Color online) Periodic two-soliton state at α = 0

and η = 20 grown adiabatically for δ2 = 0 and δ1 = −β1.
(a), (d) – The FH, SH intensity profiles; (b), (e) – the
corresponding phase profiles; (c), (f) – the FH, SH comb
spectra

π-spaced symmetric peaks. The peaks possess the back-

grounds |f̄ |2 and |s̄|2. Behavior of the phases arg(f) and

arg(s) is remarkable. While the SH phase experiences

modest deviations when crossing the soliton area, the

FH phase shows π-steps. Thus, f(ϕ) changes sign when

crossing the soliton area and our periodic 2-soliton state

consists of two A-solitons. This structure emerges spon-

taneously without imposing the antiperiodic conditions.

The FH and SH comb spectra are shown in (c) and (f).

These spectra are well developed and symmetric, and

|s0| ≃ 1. Owing to the π-periodicity in ϕ, nonzero FH

and SH harmonics are j = ±1,±3, . . . and l = 0,±2, . . ..

The comb line spacing is here 2v1/R.

When switching |j| to 2 and 3, we arrive at 4- and

6-soliton P-states consisting of A-soliton pairs. Also,

we varied slowly detuning δ1 within the broad range

[−1, 1] starting from well developed two-soliton states

for η & 10. The dual symmetric soliton solution sur-

vives during this adiabatic procedure; the soliton am-

plitudes and the widths of the comb spectra decrease

only modestly when changing |δ1|. Thus, different sta-

ble P-states can exist at the same external parameters

η and δ1,2. Also, we applied our adiabatic procedure to

the case of nonzero walk-off, α 6= 0. The intensity pro-

files have here pronounced asymmetric oscillating tails

and become less localized and intense as compared to

the profiles of Fig. 1, while v01 6= 0. Similarly, we obtain

1-, 3-, and 5-soliton A-states.
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