Влияние содержания кислорода на переход металл-изолятор и спиновое состояние ионов Co^{3+} слоистого кобальтита $\mathrm{NdBaCo_2O_{5+\delta}}$ $(0.37 \leq \delta \leq 0.65)$

Н. И. Солин¹⁾, С. В. Наумов

Институт физики металлов им. М. Н. Михеева Уральского отделения РАН, 620108 Екатеринбург, Россия

Поступила в редакцию 17 января 2022 г. После переработки 25 марта 2022 г. Принята к публикации 26 марта 2022 г.

Впервые в слоистом кобальтите NdBaCo₂O_{5+ δ}, где 0.37 $\leq \delta \leq$ 0.65, исследовано влияние содержания кислорода δ на переход металл-изолятор, магнитное и спиновое состояние ионов Co³⁺. Увеличение δ уменьшает температуру перехода металл-изолятор $T_{\rm MI}$, температуры антиферромагнитного упорядочения T_N и Кюри T_C на ~ 100–150 К. Для всех значений δ переход металл-изолятор происходит при изменении спинового состояния ионов Co³⁺ из HS/LS состояния в металлической фазе к IS/LS состоянию в полупроводниковой фазе, при этом с увеличением δ спиновое состояние ионов Co³⁺ изменяется от IS/LS к HS/LS состоянию. При значениях $\delta \sim 0.65$ происходит переход типа "сильнолегированный полупроводник–плохой металл" без изменения спинового состояния ионов Co³⁺. Ферромагнитное поведение NdBaCo₂O_{5+ δ} ниже T_N , в "AFM" фазе, объясняется в метамагнитной модели влиянием размера редкоземельного иона Nd³⁺ на антиферромагнитное состояние слоистых кобальтитов.

DOI: 10.31857/S1234567822090063, EDN: dxfohy

Широкий интерес к упорядоченным слоистым оксидам кобальта $RBaCo_2O_{5+\delta}$, где R^{3+} – редкоземельный ион, δ – содержание кислорода, вызван их необычными магнитными и транспортными свойствами [1,2]. Они имеют слоистую кристаллическую структуру перовскита, состоящую из слоев, расположенных вдоль с-оси, в которой слои RO_δ и BaO перемежаются слоями CoO₂. Наиболее подробно изучены соединения RBaCo₂O_{5+ δ} $\delta \approx 0.5$, где R³⁺ = = Eu, Gd, Tb и др. из середины ряда редкоземельных ионов [1-7]. В RBaCo₂O_{5.5} присутствуют только ионы Co³⁺, которые расположены в кристаллической решетке из равного числа октаэдров CoO₆ и квадратных пирамид CoO_5 [1]. В них обнаружен ряд последовательных фазовых переходов: металл-изолятор (MI), парамагнитный (PM), ферромагнитный (FM), антиферромагнитные (AFM) переходы [1–7].

Основной вопрос касается происхождения и движущих сил перехода металл–изолятор в этих материалах. В отличие от манганитов, переход MI в кобальтитах не связан с магнитным упорядочением. Необычные свойства соединений $\operatorname{RBaCo_2O_{5+\delta}}$, как и LaCoO₃, в основном обусловлены тем, что ионы кобальта могут находиться в трех разных состояниях: в низком (LS), промежуточном (IS) и высоком (HS) спиновом состоянии. Разности энергий

Размер редкоземельного элемента влияет на кристаллическое поле на ионах Со и, следовательно, он может оказывать влияние на их спиновое состояние и магнитное состояние RBaCo₂O_{5.5} [10]. Наиболышими размерами из редкоземельных ионов обладают ионы Pr^{3+} и Nd³⁺ [11]. Результаты нейтронной и синхротронной порошковой дифракции [12] и мюонной спектроскопии [13] показывают, что, хотя температуры фазовых переходов NdBaCo₂O_{5.5} аналогичны температурам переходов известных кобальтитов,

между спиновыми состояниями в основном малы [8] и легко преодолеваются при изменении температуры, формируя необычные последовательности структурных и фазовых переходов, в том числе переход МІ. Из структурных и магнитных данных [4] сделан вывод, что в GdBaCo₂O_{5.5} переход из непроводящей фазы к металлической обусловлен возбуждением электронов LS-состояния в ед полосу HSсостояния Co³⁺ в октаэдрах без изменений IS состояния Co³⁺ в пирамидах. Хотя эта модель противоречит структурным данным, она нашла широкое признание. Многие исследователи придерживаются этой модели перехода металл-изолятор и в других кобальтитах RBaCo₂O_{5.50}. Уточнение парамагнитного вклада ионов \mathbb{R}^{3+} показывает [9], что переход может происходить при изменении спиновых состояний ионов Co³⁺ в октаэдрах и пирамидах в согласии со структурными данными [4].

¹⁾e-mail: solin@imp.uran.ru

микроскопическая магнитная природа их сильно отличается. В частности, это проявляется в том, что в NdBaCo₂O_{5+ δ} $\delta \approx 0.5$ [14] и PrBaCo₂O_{5.50} [15] ниже $T_N \sim 230-250$ K сохраняется FM состояние, в то время как другие кобальтиты остаются в AFM состоянии [1–7]. Метамагнитное состояние и ферромагнитное поведение NdBaCo₂O_{5+ δ} $\delta \approx 0.5$ при низких температурах объяснено [14] большим размером редкоземельных ионов на основе метамагнитной модели Л. Ландау [16] и упорядочением спиновых состояний (SSO – spin-state ordering) ионов Co³⁺ ниже $T \sim T_{\rm SSO}$ [12, 17–19].

В RBaCo₂O_{5+ δ} существенную роль играет содержание кислорода δ , которое можно менять в широком пределе $0 \le \delta \le 1$ [1]. Оно контролирует не только среднюю валентность ионов Co (которая может изменяться от 3.5+ для $\delta = 1$ до 2.5+ для $\delta = 0$), но и кислородное (пирамидальное или октаэдрическое) окружение их и поэтому имеет сильное влияние на спиновое состояние ионов Co. Вследствие этого магнитные и транспортные свойства этих соединений в большой степени определяются содержанием кислорода [1–7].

О свойствах соединений RBaCo₂O_{5+δ} с более высоким содержанием кислорода $\delta > 0.5$ известно немного. В монокристаллах GdBaCo₂O_{5+δ} свойства электронных ($\delta < 0.5$) и дырочных ($\delta > 0.5$) соединений асимметричны. С увеличением концентрации носителей тока в электронных соединениях электросопротивление увеличивается, намагниченность уменьшается, а в дырочных - электросопротивление уменьшается, намагниченность увеличивается [3]. Имеются работы, посвященные исследованиям соединениям фиксированного состава $RBaCo_2O_{5+\delta}$, где R = Nd, Pr при $\delta \sim 0.7$ [20–22]. Вблизи пеметалл-изолятор электросопротивление рехода $NdBaCo_2O_{5+\delta}$ при $\delta \approx 0.7$ имеет активационный характер [20]. Магнитные свойства и фазовая диаграмма парамагнетик-ферромагнетик PrBaCo₂O_{5+δ}, где $0.35 \leq \delta \leq 0.8$, необычны и отличаются от свойств известных слоистых кобальтитов [15]. Переход металл-изолятор $PrBaCo_2O_{5+\delta}$, где $0.5 \le \delta \le 0.7$, объясняется изменением спиновых состояний ионов Со³⁺ [19]. Представляет интерес сравнивать свойства $PrBaCo_2O_{5+\delta}$ [15, 19] и родственного соединения $NdBaCo_2O_{5+\delta}$ в зависимости от содержания кислорода.

В данной работе приведены результаты исследований влияния содержания кислорода на переход PM-FM (T_C), FM-AFM (T_N), металл-изолятор и связь их с изменением спиновых состояний Co³⁺ в поликристаллах NdBaCo₂O_{5+ δ}, где 0.37 $\leq \delta \leq$ 0.65. В данной работе учитывался парамагнитный вклад редкоземельного иона Nd³⁺, в отличие от других известных работ [15, 19, 21, 22]. Установлено, что в металлической фазе кобальтита NdBaCo₂O_{5+ δ} спиновое состояние ионов Co³⁺ в зависимости от δ не меняется, ниже температуры перехода МІ эффективный магнитный момент $\mu_{\rm eff}$ /Co в зависимости от δ увеличивается, приближаясь к спиновому состоянию металлической фазы NdBaCo₂O_{5+ δ}.

Результаты. Поликристаллы NdBaCo₂O_{5+δ} были синтезированы твердофазным методом из исходных компонентов Nd₂O₃, BaCO₃ и Co₃O₄ ступенчатым отжигом на воздухе при $T = 900 - 1125 \,^{\circ}\mathrm{C}$ и медленным охлаждением до комнатной температуры [1]. Абсолютное содержание кислорода определено методом восстановления образца в водороде. Исходные образцы имели содержание кислорода $\delta = 0.65 \pm 0.02$. Необходимое содержание кислорода δ достигалось дополнительными отжигами исходного образца при $T = 350 \div 800 \,^{\circ}\text{C}$ с последующей закалкой и определялось по изменению веса [3], предполагая $\delta = 0.65$. Вес образцов выбран так, чтобы точность определения δ была не хуже 0.01. По данным порошковой дифракции рентгеновских лучей все образцы были однофазными. При комнатной температуре образцы с $\delta = 0.48 \div 0.65$ имели орторомбическую структуру и описывались пространственной группой Рттт (#47) с элементарной ячейкой $a_p \times 2a_p \times 2a_p$, где a_p – параметр псевдокубической ячейки перовскита. Образец с $\delta = 0.37$ также имел орторомбическую структуру (#47) с элементарной ячейкой $a_p \times a_p \times 2a_p$. Объем элементарной ячейки уменьшался с увеличением δ . Значения структурных параметров образцов согласуются с литературными данными [23]. Измерения электросопротивления проведены четырехконтактным методом. Магнитные измерения проведены на установке MPMS-5XL (QUANTUM DESIGN) в центре коллективного пользования ИФМ УрО РАН.

На рисунке 1 приведены температурные зависимости намагниченности 6 образцов NdBaCo₂O_{5+ δ} с величинами δ от 0.37 до 0.65. При $\delta \neq 0.5$ возникают, кроме ионов Co³⁺, ионы Co⁺² или Co⁴⁺ с содержанием $|\delta - 0.5|$. Образцы были охлаждены в магнитном поле H = 0 от 300 до 10 K и измерены в поле H = 1 кЭ до 400 K. Вид намагниченности M(T) известных слоистых кобальтитов RBaCo₂O_{5.5} на основе ионов R³⁺ из середины ряда редкоземельных элементов примерно одинаков. Намагниченность резко возрастает ниже $T_C \sim 280$ K, в небольшом интервале температур образец находится в FM состоянии, достигает максимума при $T_{\rm max} = T_N \sim 250$ K, ниже

Рис. 1. (Цветной онлайн) Температурные зависимости намагниченности NdBaCo₂O_{5+ δ}, 0.37 $\leq \delta \leq$ 0.65 при H = 1 кЭ. Для ясности изображений значения M(T) для $\delta = 0.37 - 0.53$ ниже 175 К не показаны. Их намагниченность монотонно уменьшается с температурой. На вставке показана зависимость температуры Кюри T_C , AFM упорядочения T_N от содержания кислорода. РМ вклад иона Nd³⁺ вычтен

которой она плавно уменьшается, указывая о переходе образца в AFM состояние [1–7].

Приведенные температурные зависимости намагниченности M(T) NdBaCo₂O_{5+ δ} отличаются от вида M(T) известных слоистых кобальтитов RBaCo₂O_{5+ δ} при $\delta = 0.5$, в которых температуры перехода в FM (T_C) и AFM (T_N) слабо зависят от вида R [1–7]. При увеличении содержания кислорода пик намагниченности $M_{\max}(\delta)$ при T_N изменяется немонотонно с минимумом при $\delta = 0.60$, далее увеличивается, а значения Т_N сильно сдвигаются в сторону низких температур (рис. 1). Температура Кюри $T_c(\delta)$, определенная из максимума величины dM/dT (вставка рис. 1), уменьшается при увеличении содержании кислорода от 260 до 120 K, слабо меняется до $\delta = 0.53$, наибольшее изменение $T_c(\delta)$ происходит при $\delta > 0.53 - 0.60$. Спонтанный момент Ms, определенный из M(H) до $50\,\mathrm{k}$ Э при T = const, возникает ~ на 15–20 K выше, чем значение T_C , определенное из максимума dM/dT, т.е. магнитное упорядочение, по-видимому, наступает при $T_C(\delta) \approx 280-140 \, \text{K}$. Возникновение Ms при $T \sim 140 \,\mathrm{K}$ и $\delta = 0.65$ согласуется с данными [20]. Температура перехода в АFM состояние, определенная по температуре максимума намагниченности $T_{\max}(\delta) \approx T_N$, примерно на 20 К меньше $T_C(\delta)$ и имеет схожую $T_C(\delta)$ зависимость от δ (вставка рис. 1).

Основное отличие NdBaCo₂O_{5+ δ} от известных кобальтитов, кроме PrBaCo₂O_{5+ δ} [15] и LaBaCo₂O_{5.50} [24], заключается в том, что намагниченность ниже $T_N(\delta)$ проявляет ферромагнитное поведение и в маг-

Письма в ЖЭТФ том 115 вып. 9-10 2022

нитном поле остается конечной. Данные $M(T, H = 1 \text{ к}\Theta)$ ниже 175 К для $\delta = 0.37-0.53$ на рис. 1 не показаны, но намагниченность для них остается конечной, как и для $\delta = 0.60 \div 0.65$. В PrBaCo₂O_{5+ δ} (0.37 $\leq \delta \leq 0.80$) FM взаимодействия также присутствуют при всех температурах ниже T_C и даже в AFM фазе [15].

Ферромагнитное поведение NdBaCo₂O_{5.48} $\delta \approx 0.5$ ниже T_N было объяснено его метамагнитным состоянием [14]. Ниже $T \sim 20$ К в отсутствии магнитного поля NdBaCo₂O_{5.48} находится в AFM состоянии, и в небольшом магнитном поле 10–20 кЭ переходит в метамагнитное, т.е. смешанное FM + AFM состояние. Выше $T \sim 20$ К образец представляет смесь обменносвязанных ферромагнитной и антиферромагнитной фаз, что подтверждается обнаружением обменного смещения в NdBaCo₂O_{5.48} [14].

Слоистые кобальтиты являются AFM со слабо связанными спиновыми подрешетками [3] и являются метамагнетиками даже при высоких температурах [7]. Приложение внешнего магнитного поля в RBaCo₂O_{5.50}, где R = Gd, Tb, при $T \sim T_N \sim 250$ K уменьшает температуру перехода AFM/FM на ~1 K при $H_{\rm cr} \sim 10$ кЭ, и требуется поле $H_{\rm cr} \sim 200-300$ кЭ, чтобы этот переход осуществился при T = 0 [3, 7, 14].

В близком по составу соединении NdBaCo₂O_{5 47} в нулевом магнитном поле при $T_N \sim 275 \,\mathrm{K}$ ионы Co^{3+} NdBaCo₂O_{5.47} упорядочиваются в AFM структуру G-типа [12]. В интервале температур $T_N \sim 275 \, {\rm K} >$ $> T > T_{\rm SSO} \sim 230 \, {\rm K}$ ионы ${\rm Co}^{3+}$ выше T_N расположены в двух позициях – пирамидального и октаэдрического кислородного окружения. Ниже $T_{\rm SSO} \sim 230 \, {\rm K}$ в NdBaCo₂O_{5.47} возникает AFM упорядоченная по спину фаза (SSO – spin-state ordered phase), в которой ионы Co³⁺ находятся в четырех разных состояниях – в двух отличающихся октаэдрах и пирамидах. Следуя метамагнитной модели Л. Ландау [16] в слоистых соединениях предполагалось, что в SSO состоянии FM связь внутри слоев Со остается сильной, AFM связь между слоями Со, разделенными слоями NdO_δ, ослаблена из-за большого размера ионов Nd³⁺. В небольшом магнитном поле происходит переход из AFM в FM состояние.

Предполагаем, что такая модель применима и при $\delta \approx 0.37-0.65$. Отметим, что влияние содержания кислорода δ на T_C и T_N RBaCo₂O_{5+ δ} для R = Gd [3], Pr [15] и Nd (вставка рис. 1) примерно одинаково: значения $T_C(\delta)$ и $T_N(\delta)$ слабо изменяются при $\delta \approx 0.35-0.5$, сильно (~100 K) уменьшаются при $\delta = 0.5-0.7$. Для состава $\delta = 0.7$ FM-порядок GdBaCo₂O_{5+ δ} развивается также при температурах T < 150 K, и при T < 100 K происхо-

дит резкий переход из FM в AFM состояние [3], в отличие от NdBaCo₂O_{5+ δ} и PrBaCo₂O_{5+ δ} [15]. В LaBaCo₂O_{5.50}, где La – самый крупный немагнитный редкоземельный ион [11], FM поведение ниже T_N также объясняется влиянием размера иона La³⁺ [24]. Соединения RBaCo₂O_{5+ δ} при δ = 1 и R = Pr, La являются ферромагнетиками с T_C = 210 и 179 K [25, 26]. Возникновение ферромагнитного состояния ниже T_N в RBaCo₂O_{5+ δ} с высоким ионным радиусом R = La, Pr [24–26] и Nd, и отсутствие его в соединении GdBaCo₂O_{5+ δ} [3] с меньшим ионным радиусом позволяет заключить, что ферромагнитное состояние NdBaCo₂O_{5+ δ}, ниже T_N определяются большим размером ионов Nd³⁺.

Обнаруженное нами обменное смещение в NdBaCo₂O_{5+ δ} при $\delta = 0.37-0.53$ и T = 77 К указывает о фазовом разделении NdBaCo₂O_{5+ δ} на обменно-связанные FM и AFM фазы, характерного для метамагнитного состояния, и подтверждает это предположение.

Соединения RBaCo₂O_{5.50} с наибольшими размерами ионов $\mathbb{R}^{3+} = \mathrm{La}$, Pr, Nd проявляют FM поведение при всех температурах ниже T_C , даже в AFM фазе [24–26], а соединения с меньшим размером ионов \mathbb{R}^{3+} показывают AFM поведение [1–7]. Эти результаты доказывают влияние размера ионов R на FM состояние слоистых кобальтитов.

На рисунке 2 показана температурная зависимость электросопротивления $\rho(T)$ NdBaCo₂O_{5+ δ} $0.37 \ge \delta \ge 0.65$ в интервале температур $100 \div 400$ К. Для сравнения приведены данные $\rho(T)$ для $\delta = 0.70$ [1]. Температурная зависимость электросопротивления $\rho(T)$ имеет полупроводниковый характер: $\rho(T)$ монотонно убывает при увеличении температуры и содержания кислорода. После резкого уменьшения $\rho(T)$ выше $T_{\rm MI}$, указанных на рис. 2 стрелками, образец переходит в слабо зависящее от температуры состояние. Фактически это не температура перехода металл-изолятор, а температура перехода из квазиметаллического в полупроводниковое состояние [1,2]. Знак производной $d\rho/dT$ остается отрицательным выше $T_{\rm MI}$, свидетельствуя о полупроводниковом характере $\rho(T)$, возможно, связанный с поликристалличностью образца.

В небольшом интервале температур (~100–150 К ниже $T_{\rm MI}$) электросопротивление NdBaCo₂O_{5+ δ}, $0.48 \ge \delta \ge 0.65$ может быть описано активационным выражением [20]:

$$\rho(T) = \rho_0 \exp(\Delta E/kT). \tag{1}$$

C увеличением δ энергия активации электросопротивления ΔE изменяется от $\Delta E \sim 50 \pm 10\,{\rm M}$ до

 10° 35 $T_{\rm ST}({\rm K})$ Ĵ. 10⁻¹ 250 0.35 0.50 0.65 ρ (Ohm cm) Oxygen content 10^{-2} 0.37 10^{-3} 100 200 300 400 *T* (K)

Рис. 2. (Цветной онлайн) Температурные зависимости электросопротивления NdBaCo₂O_{5+ δ}, 0.37 $\geq \delta \geq$ 0.65. Вставка: температуры перехода металл-изолятор $T_{\rm MI}$ и спинового состояния $T_{\rm ST}$ в зависимости от содержания кислорода δ

 $\Delta E \approx 30$ мэВ для $\delta = 0.65$ (0.70). Предэкспоненциальный член также уменьшается от величины $\rho_0 \approx \approx 3 \cdot 10^{-3}$ Ом см, характерной для неупорядоченной среды до значения $\rho_0 \approx 2 \cdot 10^{-4}$ Ом сm, больше присущего полупроводникам. В NdBaCo₂O_{5.65} в области температур $T_C < T < T_{\rm MI} \sim 250$ К обнаружено характерное для полупроводников положительное магнитосопротивление $MR = [\rho(H) - \rho(H = 0)]/\rho(H = 0)$ до 2.5% при H = 10 кЭ.

Интересно отметить, что $T_{\rm MI}(\delta)$, $T_N(\delta)$, $T_C(\delta)$ (вставки рис. 1 и 2), отличаясь по величине примерно на 100 K, в зависимости от содержания кислорода имеют приблизительно одинаковый вид: слабо меняются при $\delta \leq 0.53$, резко уменьшаются при $\delta > 0.60$. Изменения $\rho(T)$ уменьшаются с увеличением δ . Электросопротивление от 100 K до $T_{\rm MI}$ изменяется почти на 3 порядка при $\delta = 0.37$, а при $\delta = 0.65$ оно меняется менее одного порядка. При $\delta = 0.65$ происходит переход типа сильнолегированный полупроводник – плохой металл почти без изменения спинового состояния. Качественно поведение $\rho(\delta, T)$ согласуется с изменениями эффективного магнитного момента $\mu_{\rm eff}(\delta, T)$ (см. ниже).

Магнитные методы являются одним из основных методов определения спиновых состояний Co³⁺ в

кобальтитах. Спиновое состояние ионов Co^{3+} определяется из измерений парамагнитной восприимчивости, описываемой законом Кюри–Вейса $\chi(T) \sim$ $\sim \mu_{\rm eff}^2/(T - \theta_{\rm PM})$ выше и ниже $T_{\rm MI}$ [1–7]. Сложностью магнитных методов в RBaCo₂O_{5+δ} для этих целей является трудности разделения вклада ионов Со³⁺ от РМ вклада редкоземельных ионов R³⁺. Расхождения в спиновых состояниях ионов Со³⁺ в разных работах, полагаем, связано с тем, что этот вклад не учитывается или учитывается неправильно (см. [9]). Обычно предполагается, что этот вклад совпадает с вкладом свободного иона R³ и определяется из выражения для парамагнитной восприимчивости $\chi = \mu_{\rm eff}^2/3k(T-\theta_{\rm PM})$, где $\mu_{\rm eff}$ – эффективный магнит-ный момент иона ${\rm R}^{3+}$, парамагнитная температура Вейса $\theta_{\rm PM} = 0$ [3, 6, 7, 27]. Значения $\mu_{\rm eff}$ и $\theta_{\rm PM}$ определяются из насыщения намагниченности в большом магнитном поле при низких температурах [9, 28], которая для редкоземельных ионов R³⁺ описывается функцией Бриллюэна [29]:

$$M = N_A g \mu_B J B_S(x), \tag{2}$$

где $B_S(x)$ – функция Бриллюэна, N_A – число Авогадро, $x = g\mu_B J H/k (T - \theta_{\rm PM})$, g – фактор Ланде, μ_B – магнетон Бора, J – суммарный магнитный момент \mathbb{R}^{3+} , H – магнитное поле, k – постоянная Больцмана. В работе предполагается, что в NdBaCo₂O_{5+ δ} PM вклад ионов Nd³⁺ не зависит от δ и описывается выражением (2) при $\theta_{\rm PM} = -18$ K, как и в NdBaCo₂O_{5.48} [14].

На рисунке За и b символами показаны температурные зависимости обратной парамагнитной восприимчивости $\chi^{-1}(T)$ NdBaCo₂O_{5+ δ} ($\delta = 0.37-0.65$, H = 10 кЭ), определенные с вычетом PM вклада иона Nd³⁺. Точками показаны экспериментальные значения $\chi^{-1}_{exp}(T)$ для двух значений $\delta = 0.48$ и $\delta = 0.63$. Все образцы были охлаждены при H = 0 от 300 до 10 К и намагниченность измерена до 400 К при H = 1, 10, 50 кЭ. Сплошными линиями показаны данные $\chi^{-1}(T)$ для H = 0.48 при H = 50 кЭ и $\delta = 0.63$ при H = 1 кЭ, которые практически не отличаются от значений $\chi^{-1}(T)$ при H = 10 кЭ. Такие же данные получены для других значений δ . Эти результаты доказывают достоверность выражения (2) для определения PM вклада ионов Nd³⁺.

Температурные зависимости $\chi^{-1}(T)$ для $\delta = 0.37 - 0.60$ примерно одинаковы и похожи на наблюдаемые зависимости $\chi^{-1}(T)$ в известных слоистых кобальтитах с $\delta \approx 0.5$. В этих образцах практически нельзя выделить линейный участок на зависимости $\chi^{-1}(T)$. Фактически это означает, что поведение $\chi^{-1}(T)$ невозможно описать при постоянном значении $\mu_{\rm eff}(T)$ и переход сопровождается изменениями $\mu_{\rm eff}(T)$ с температурой. С другой стороны, для $\delta = 0.63$ и 0.65 выше и ниже $T_{\rm MI}$ видно линейное поведение $\chi^{-1}(T)$. Для определения особенностей перехода металл-изолятор определены дифференциальные значения $\mu_{\rm eff}^{\rm dif}/{\rm Co}(T)$. Были измерены значения $\chi^{-1}(T)$ с интервалом $\Delta T = 5$ К и для каждого участка определены дифференциальные значения дифференциальные значения $\mu_{\rm eff}^{\rm dif}/{\rm Co}^{3+}(T)$ с учетом вклада конкретного содержания ионов ${\rm Co}^{2+}$ и/или ${\rm Co}^{+4}$ для всех значений δ (рис. 3с и d).

Ниже 400 К в некотором интервале температур величины $\mu_{\text{eff}}^{\text{dif}}$ /Со при $\delta = 0.37 - 0.60$ остаются постоянными (рис. 3с и d). Температура, при которой происходит резкое изменение наклона $\chi^{-1}(T)$ (чему соответствует резкое уменьшение $\mu_{\rm eff}^{\rm dif}/{\rm Co}$) считается температурой перехода металл-изолятор $T_{\rm ST}$ по спиновому переходу. Величина этой температуры T_{ST} примерно на 10–15 К превышает температуру T_{MI} при $\delta = 0.37 - 0.53$ (вставка рис. 2). Эти расхождения объясняются вкладом межгранульного сопротивления в электросопротивление поликристаллов. При $\delta = 0.60 - 0.65$ нет четкой границы перехода ни в $\rho(T)$, ни в $\chi^{-1}(T)$ на рис. 2 и 3. Вследствие интуитивного определения этой границы значения T_{ST} и T_{MI} совпадают. Ниже 400 К наблюдается пропорциональное температуре уменьшение $\chi^{-1}(T)$ при $\delta = 0.63(0.65)$ выше и ниже $T_{\rm MI}$. Наклоны $\chi^{-1}(T)$ выше и ниже $T_{\rm MI}$ чуть различаются (см. сплошные линии на кривых $\delta = 0.63$ и 0.65 рис. 3d). По их поведению определено, что вблизи T_{MI} происходит небольшое изменение спинового состояния Co^{3+} .

В металлической фазе ($\delta = 0.37 \div 0.65$) при $T > T_{\rm MI}$ (рис. 3с и d) значения $\mu_{\rm eff}^{\rm dif}/{\rm Co}^{3+} = 3.43 \pm 0.02 \,\mu_B$ не зависят от содержания кислорода и соответствуют HS/LS состоянию ионов Co³⁺ в соотношении 1:1. Значительное отклонение $\mu_{\rm eff}^{\rm dif}/{\rm Co}$ от этого состояния при $\delta = 0.37$ и небольшое отклонение ero при $\delta = 0.60 \div 0.65$ объяснены разными вкладами ионов Co²⁺ и Co⁴⁺. Ионы Co²⁺ всегда находятся в HS (S = 3/2) состоянии из-за более слабого кристаллического поля, чем ионы Co³⁺, а ионы Co⁴⁺ всегда в LS (S = 1/2) состоянии из-за более сильного кристаллического поля [30]. С увеличением содержания Co²⁺ или Co⁴⁺ отклонение $\mu_{\rm eff}/{\rm Co}^{3+}$ от HS/LS состояния увеличивается, которое находится в разумном согласии с расчетами вклада ионов Co²⁺ и Co⁴⁺.

В полупроводниковой фазе при $T_C < T < T_{\rm MI}$ и $\delta = 0.37 - 0.53$ (рис. 3с) соединения находятся в IS/LS состоянии, причем большая часть ионов Co³⁺ находится в LS состоянии. Далее в небольшом интервале температур происходит резкий переход в

Рис. 3. (Цветной онлайн) Температурные зависимости обратной парамагнитной восприимчивости $\chi^{-1}(T)$ и дифференциального магнитного момента $\mu_{\text{eff}}^{\text{dif}}$ /Co NdBaCo₂O_{5+ δ}, 0.37 $\leq \delta \leq$ 0.65. Символы – H = 10 кЭ, линии – H = 1 или 50 кЭ (см. текст). Парамагнитный вклад ионов Nd³⁺ вычтен. Стрелками указаны температуры перехода металл-изолятор

HS/LS состояние. При $\delta=0.60-0.63~({\rm puc.3d})$ значения $\mu_{\rm eff}^{\rm dif}/{\rm Co}^{3+}$ превышают значения, соответствующие IS/LS состоянию ионов ${\rm Co}^{3+}$ в соотношении 1:1, т.е. большая часть ионов ${\rm Co}^{3+}$ находится в IS состоянии.

Далее были выделены примерно линейные от температуры участки $\chi^{-1}(T)$ на рис. За
и b, и из закона Кюри–Вейса определены $\mu_{\rm eff}/{
m Co}^{3+}$ (кривые 1 и 2) и парамагнитная температура Вейса $\theta_{\rm PM}$ (кривые 3 и 4) выше и ниже $T_{\rm MI}$ в зависимости от содержания кислорода δ (рис. 4). В металлической фазе (кривая 1 рис. 4) при $T > T_{\rm MI}$ значения $\mu_{\rm eff}/{
m Co}^{3+} =$ $= 3.43 \pm 0.02 \, \mu_B$ не зависят от содержания кислорода $\delta = 0.37 \div 0.65$ и соответствуют HS/LS состоянию ионов Co³⁺ в соотношении 1:1. Значительное отклонение $\mu_{\rm eff}$ /Со от этого состояния при $\delta = 0.37$ и небольшое отклонение его при $\delta = 0.65$ объяснены выше разными вкладами ионов Со²⁺ и Со⁴⁺. В парамагнитной фазе при $T_C < T < T_{
m MI}$ значения $\mu_{
m eff}/
m Co$ (кривая 2 рис. 4) при 0.37-0.53 постоянны, при увеличении далее до $\delta = 0.65$ значения $\mu_{\rm eff}/{
m Co}$ увеличиваются до значения $\mu_{\rm eff}/{
m Co}$ при $T>T_{
m MI}.$ При уве-

Рис. 4. (Цветной онлайн) Влияние содержания кислорода δ на эффективный магнитный момент μ_{eff} /Со (кривые 1 и 2) и парамагнитную температуру θ_{PM} кобальтита NdBaCo₂O_{5+ δ} (кривые 3 и 4) в металлической (кривые 1 и 4) и полупроводниковой (кривые 2 и 3)

личении соотношения Co⁴⁺/Co³⁺ до 15/85 ($\delta = 0.65$) переход полупроводник-плохой металл (рис. 2) про-

исходит без изменения спинового состояния. Результаты $\mu_{\rm ef}/{\rm Co}$ согласуются с данными $\mu_{\rm eff}^{\rm dif}/{\rm Co},$ приведенными на рис. 3.

Поскольку парамагнитная температура Вейса $\theta_{\rm PM}$ связана с характеристиками обменного взаимодействия [29], определяя $\theta_{\rm PM}$ ниже и выше $T_{\rm MI}$, можно получить информацию об обменном взаимодействии в зависимости от содержания кислорода. В полупроводниковой фазе при $T_C < T < T_{\rm MI}$ с увеличением δ значения $\theta_{\rm PM}$ уменьшаются от ≈ 260 до 100 К при $\delta = 0.65$ (кривая 4 рис. 4). В металлической фазе $\theta_{\rm PM}$ увеличивается от отрицательных значений $\Theta_{\rm PM} \approx -100\,{\rm K}$ к положительным значениям (кривые 3 рис. 4). При $\delta = 0.65 \ \theta_{\rm PM}$ принимает значения $\theta_{\rm PM} \approx 110 \, {\rm K}$, совпадающие со значениями $heta_{\rm PM}$ при $T < T_{\rm MI}$. Изменение знака $\theta_{\rm PM}$ при $\delta \approx 0.55{-}0.6$ означает, что характер обменных взаимодействий меняется от AFM+FM к FM обмену и происходит усиление FM обмена при увеличении δ .

С увеличением содержания кислорода как намагниченность $M_{\max}(\delta)$ при T_N (рис. 1), так и спонтанный момент Ms (по нашим предварительным данным) увеличиваются немонотонно с минимумом при $\delta = 0.60$. Спонтанный момент NdBaCo₂O_{5+ δ} увеличивается от $Ms \approx 0.40(\delta = 0.48)$ до $0.85(\delta = 0.65) \mu_B$ с минимумом $Ms \approx 0.2 \mu_B$ при $\delta = 0.60$. Немонотонное поведение $M_{\max}(\delta)$ и $Ms(\delta)$ является свидетельством присутствия конкурирующих FM и AFM взаимодействий в этих соединениях. FM обмен может быть вызван механизмом двойного обмен Co³⁺-O-Co⁴⁺ [30], либо по эмпирическому правилу Гуденаф– Канамори наличием FM сверхобменных взаимодействий Co³⁺-O-Co⁴⁺ [31], AFM обмен – сверхобменными взаимодействиями Co³⁺-O-Co³⁺ [32].

Температурные и полевые зависимости намагниченности $\operatorname{PrBaCo_2O_{5+\delta}}$, где $0.35 \leq \delta \leq 0.8$ [15] и $\operatorname{NdBaCo_2O_{5+\delta}}$, где $0.37 \leq \delta \leq 0.65$ (рис. 1) похожи, T_C и T_N в зависимости от δ также уменьшаются примерно на 100 K, и наиболее резко при $\delta > 0.6$ [15]. Магнитное поведение в $\operatorname{GdBaCo_2O_{5+\delta}}$ также заметно изменяется, когда содержание кислорода $\delta > 0.55$. Предполагается, что такое изменение свидетельствует об изменении расположений спинов ионов Co^{3+} и Co^{4+} [3]. Можно предположить, что особенность свойств при $\delta \sim 0.6$ присуща и другим слоистым кобальтитам; она связана с изменением характера обменных взаимодействий от $\operatorname{AFM} + \operatorname{FM}$ к FM поведению при увеличении содержания кислорода.

Величины $T_C(\delta)$ и $T_N(\delta)$ NdBaCo₂O_{5+ δ} различаются примерно на 20 K и имеют схожие зависимости от δ (вставка рис. 1). Результат кажется есте-

ственным, так как в небольшом интервале температур одно магнитное FM состояние плавно переходит в другое AFM состояние. Слабое изменение $T_C(\delta)$ и $T_N(\delta)$ NdBaCo₂O_{5+ δ} до $\delta = 0.53$ и сильное его уменьшение выше $\delta = 0.6$, как и немонотонное поведение намагниченности $M_{\max}(\delta)$ (рис. 1), полагаем, качественно можно объяснить изменением характера обменных взаимодействий. При $\delta < 0.53$ присутствуют AFM + FM взаимодействия, соответственно значения M_{max} и T_N уменьшаются, но слабо. Преобладание FM взаимодействий при $\delta > 0.6$ приводит к увеличению намагниченности $M_{\max}(\delta)$, уменьшениям $T_C(\delta)$ и $T_N(\delta) \sim$ на 100–150 К при усилении FM обмена Co³⁺-0-Co⁴⁺, и соответственно ослаблении AFM обмена Co³⁺-0-Co³⁺ при увеличении доли намагниченности иона Со⁴⁺.

Однако известно и альтернативное объяснение $T_{C}(\delta)$ [33]. Обычно полагают, что при $T = T_{N}$ происходит переход в AFM-состояние, хотя поведение намагниченности M(T) не характерно для антиферромагнетика: намагниченность сохраняется значительно ниже T_N . Поведение намагниченности M(T, H = $= 1 \kappa \Im$) NdBaCo₂O_{5.48} вблизи T_C (рис. 1) и спонтанной намагниченности Ms также не характерны и для чистого ферромагнетика. Спонтанный момент NdBaCo₂O_{5+ δ} при $\delta \approx 0.5$ возникает при $T \sim 300$ K, на 15–20 К выше величины T_C , определенной из dM/dT (вставка рис. 3 [14]). По нашим предварительным данным похожие поведения T_C и M_S характерны соединениям с другими δ (рис. 1). На основе численных расчетов высказано предположение [33], что при T_N возникает неколлинеарное AFM состояние, перехода в FM состояние при $T = T_C$ нет, есть плавный переход от РМ к скошенному, неколлинеарному AFM состоянию, ниже T_N происходит переход в другое коллинеарное AFM состояние. По данным мюонной спектроскопии, в NdBaCo₂O_{5.50} примерно на 100 К ниже $T_N = 265(5)$ К возникает другая AFM структура [13].

Заключение. Методом твердофазного синтеза приготовлены поликристаллы слоистых кобальтитов NdBaCo₂O_{5+ δ}. с разным содержанием кислорода 0.37 $\leq \delta \leq$ 0.65. Переход металл-изолятор в NdBaCo₂O_{5+ δ} происходит при изменении спинового состояния ионов Co³⁺ из HS/LS в металлической фазе в IS/LS состояние в полупроводниковой фазе, как в родственных соединениях RBaCo₂O_{5.5}, где R = Gd, Tb [9,28]. В полупроводниковой фазе с увеличением δ спиновые состояния иона Co³⁺ NdBaCo₂O^{5+ δ} приближаются к HS/LS состоянию. Наблюдаемые отклонения спиновых состояний от HS/LS состояния находятся в разумном согласии с возможным влиянием вкладов и
онов ${\rm Co}^{2+}$ и/или ${\rm Co}^{4+}.$

Ферромагнитное поведение NdBaCo₂O_{5+ δ} ниже T_N , в "AFM" фазе, объясняется большим размером иона Nd³⁺.

Предполагается, что уменьшение $T_N, T_C, T_{\rm MI}$ и $T_{\rm ST}$ на $\sim 100-150\,{\rm K},$ немонотонное поведение намагниченности $M_{\rm max}(T=T_N)$ и увеличение ее при $\delta > 0.53-0.6$ вызваны изменением обменных взаимодействий ${\rm Co}^{3+}$ и ${\rm Co}^{4+}$ от AFM + FM к FM обмену при увеличении $\delta.$

Авторы благодарны А.В.Телегину за полезные обсуждения, А.В.Королеву за проведение магнитных измерений.

Работа выполнена в рамках государственного задания (тема "Спин" Г.р. # АААА-А18-118020290104-2) и частично при поддержке Российского фонда фундаментальных исследований (проект # 20-02-00461).

- A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, J. Solid State Chem. **142**, 247 (1999).
- C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, Appl. Phys. Lett. 71, 1421 (1997).
- A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. B 71, 134414 (2005).
- C. Frontera, J.L. García-Muñoz, C. Ritter, D.M. y Marero, and A. Caneiro, Phys. Rev. B 65, 180405(R) (2002).
- Y. Moritomo, T. Akimoto, M. Takeo, A. Machida, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, and A. Nakamura, Phys. Rev. B 61, 13325 (R) (2000).
- Z. X. Zhou and P. Schlottmann, Phys. Rev. B 71, 174401 (2005).
- M. Baran, V.I. Gatalskaya, R. Szymczak, S.V. Shiryaev, S.N. Barilo, K. Piotrowski, G.L. Bychkov, and H. Szymczak, J. Phys.: Condens. Matter 15, 8853 (2003).
- Н.Б. Иванова, С.Г. Овчинников, М.М. Коршунов, И.М. Еремин, Н.В. Казак, УФН **179**, 837 (2009).
- 9. Н.И. Солин, С.В. Наумов, ЖЭТФ **157**, 824 (2020).
- C. Frontera, J.L. García-Muñoz, A.E. Carillo, M.A.G. Aranda, I. Margiolaki, and A. Caneiro, Phys. Rev. B 74, 054406 (2006).
- 11. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- F. Fauth, E. Suard, V. Caignaert, and I. Mirebeau, Phys. Rev. B 66, 184421 (2002).

- A. Jarry, H. Luetkens, Y. G. Pashkevich, P. Lemmens, H.-H. Klaus, M. Stingaciu, E. Pomjakushina, and K. Conder, Physica B 404, 765 (2009).
- Н. И. Солин, С. В. Наумов, Письма в ЖЭТФ 114, 179 (2021).
- S. Ganorkar, K.R. Priolkar, P.R. Sarode, and A. Banerjee, J. Appl. Phys. **110**, 053923 (2011).
- 16. L. Landau, Phys. Zs. Sowjet. 4, 675 (1933).
- D. D. Khalyavin, O. Prokhnenko, N. Stüßer,
 V. Sikolenko, V. Efimov, A.N. Salak,
 A.A. Yaremchenko, and V.V. Kharton, Phys. Rev. B
 77, 174417 (2008).
- D. Chernyshov, V. Dmitriev, E. Pomjakushina, K. Conder, M. Stingaciu, V. Pomjakushin, and A. Podlesnyak, Phys. Rev. B 78, 024105 (2008).
- P. Miao, X. Lin, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Ueno, N. Inami, K. Ono, Y. Wang, and T. Kamiyama, Phys. Rev. B 95, 125123 (2017).
- Л. С. Лобановский, И.О. Троянчук, Г. Шимчак, О. Прохненко, ЖЭТФ 130, 854 (2006).
- S. Vlakhov, N. Kozlova, L. S. Lobanovskii, R. Wawryk, and K. A. Nenkov, Phys. Rev. B 84, 184440 (2011).
- C. Frontera, J.L. García-Muñoz, A.E. Carrillo, C. Ritter, D.M. y Marero, and A. Caneiro, Phys. Rev. B 70, 184428 (2004).
- J.C. Burley, J.F. Mitchell, S. Short, D. Miller, and Y. Tang, J. Solid State Chem. 170 339 (2003).
- E.-L. Rautama, V. Caignaert, Ph. Boullay, A.K. Kundu, V. Pralong, M. Karppinen, C. Ritter, and B. Raveau, Chem. Mater. **21**, 102 (2009).
- Md. M. Seikh, V. Pralong, O.I. Lebedev, V. Caignaert, and B. Raveau, J. Appl. Phys. **114**, 013902 (2013).
- E.-L. Rautama, V. Caignaert, P. Boullay, A. K. Kundu, V. Pralong, M. Karppinen, and B. Raveau, Chem. Mater. 21, 102 (2009).
- S. Kolesnik, B. Dabrowski, O. Chmaissem, S. Avci, J. P. Hodges, M. Avdeev, and K. Swierczek, Phys. Rev. B 86, 064434 (2012).
- Н. И. Солин, С. В. Наумов, С. В. Телегин, Письма в ЖЭТФ 107, 206 (2018).
- 29. С.В. Вонсовский, *Магнетизм*, Наука, М. (1971), гл. 9.
- 30. C. Zener, Phys. Rev. 81, 440 (1951).
- Д. Гуденаф, Магнетизм и химческая связь, Металлургия, М. (1966).
- 32. P.W. Anderson, Phys. Rev. 115, 2 (1959).
- 33. H. Wu, J. Phys.: Condens. Matter 15, 503 (2003).