Однопетлевые электрослабые радиационные поправки к поляризованному меллеровскому рассеянию

С. Г. Бондаренко⁺¹⁾, Л. В. Калиновская^{*}, Л. А. Румянцев^{*}, В. Л. Ермольчик^{*×}

⁺Лаборатория теоретической физики им. Н. Н. Боголюбова, Объединенный институт ядерных исследований, 141980 Дубна, Россия

*Лаборатория ядерных проблем им. В. П. Джелепова, Объединенный институт ядерных исследований, 141980 Дубна, Россия

[×]Институт ядерных проблем, Белорусский государственный университет, 220006 Минск, Беларусь

Поступила в редакцию 20 марта 2022 г. После переработки 27 марта 2022 г. Принята к публикации 27 марта 2022 г.

Работа посвящена теоретическому описанию поляризованного меллеровского рассеяния. В подходе спиральных амплитуд вычислены полные однопетлевые электрослабые радиационные поправки с учетом точной зависимости от массы мюона. Численные результаты представлены для интегрированных неполяризованных и поляризованных сечений, а также угловых дифференциальных распределений. Расчеты выполнены с использованием Монте-Карло генератора ReneSANCe и интегратора MCSANC.

DOI: 10.31857/S1234567822090014, EDN: dwijxa

1. Введение. Следующее поколение электронных коллайдеров – Международный линейный коллайдер (ILC) [1–6], e^+e^- Будущий циркулярный коллайдер (FCCee) [7-11], Компактный линейный коллайдер (CLIC) [12-14], и Кольцевой электронпозитронный коллайдер (СЕРС) [15] – позволят провести обширную экспериментальную программу с уникальными возможностями для прецизионных измерений. Основным преимуществом для достижения этой цели является универсальность линейных коллайдеров, так как они могут работать в четырех $e^+e^-, e^-e^-, e^-\gamma$ и $\gamma\gamma$ режимах с сильно поляризованными пучками электронов и фотонов. Важной особенностью линейных коллайдеров является высокая степень поляризации, которую можно получить для электронных пучков.

Меллеровское рассеяние наряду с комптоноподобными процессами является хорошим кандидатом для измерения поляризации пучка и оценки фона в многочисленных поисках новой физики за пределами Стандартной Модели. При высоких энергиях для поляризованного меллеровского рассеяния современные Монте-Карло (МК) инструменты необходимы не только для оценки поляризации пучка, т.е. для поляризованных экспериментов CLIC [13], ILC [16], но и для изучения мюон-мюонного поляризованного рассеяния, например, в экперименте μ TRISTAN [17]. Расчет радиационных поправок для неполяризованного меллеровского рассеяния для эксперимента [27] был выполнен на однопетлевом уровне [28, 29], частично на двухпетлевом уровне [30, 31] и впервые за пределами ультрарелятивистского приближения в [32].

Однако все вышеупомянутые исследования не сопровождались разработкой Монте-Карло генератора событий, который является стандартом современной теоретической поддержки высокоточных экспериментов.

В настоящее время существуют следующие Монте-Карло генераторы, учитывающие поляризацию на древесном уровне: AMEGIC++ [33], основанный на спиральных амплитудах и являющийся частью SHERPA; COMPHEP [34], использует традиционные методы нахождения следа для оценки матричных элементов; GRACE [35, 36] (с пакетами BASES и SPRING), вычисляющий матричные элементы с помощью методов спиральных амплитуд; WHIZARD [37] программная система, предназначенная для эффективного расчета сечений рассеяния многих частиц

Рассеяние одинаковых лептонов, $e^-e^- \rightarrow e^-e^$ было впервые рассчитано К. Меллером в 1932 г. [18]. Существует большое количество теоретических работ для описания поляризованного случая этого процесса [19–26]. В этой серии статей приводятся расчеты для КЭД и электрослабых (ЭС) однопетлевых поправок с учетом поляризации.

¹⁾e-mail: bondarenko@jinr.ru

и генерации событий, где учитывается поляризация как начального так и конечного состояний.

Теоретическая поддержка экспериментов с помощью MK генератора MERADGEN для поляризованного меллеровского рассеяния в рамках КЭД представлена в [38].

В наших предыдущих работах мы оценили теоретическую неопределенность на уровне полных однопетлевых и лидирующих ЭС поправок высшего порядка для e^+e^- и $\gamma\gamma$ поляризованных пучков. Реализации поляризованного Баба рассеяния [39], поляризованного $e^+e^- \to ZH$ [40], *s*-канала [41], $e^+e^- \to \gamma Z$ [42] и $\gamma\gamma \to ZZ$ [43] доступны в генераторе ReneSANCe [44] и интеграторе MCSANC в полностью массивном случае и в полном фазовом пространстве.

Данная статья является следующим шагом в серии работ проекта SANC, посвященных реализации одного из каналов $4f \rightarrow 0$, а именно, рассеяния одинаковых лептонов на однопетлевом уровне с учетом поляризации.

В расчетах используется ЭС схема $\alpha(0)$. Все результаты получены для энергий в системе центра масс (с.ц.м.) от $\sqrt{s} = 250$ ГэВ до 3 ТэВ. Чувствительность к начальной поляризации для борновского сечения и сечения жесткого фотонного излучения изучена для четырех наборов поляризации пучка:

$$(P_{e^-}, P_{e^-}) = (0, 0), (-1, -1), (-1, +1), (+1, -1), (+1, +1).$$
(1)

Однопетлевые вклады были рассчитаны для следующих степеней поляризации:

$$(P_{e^-}, P_{e^-}) = (0, 0), (\pm 0.8, \pm 0.8).$$
 (2)

Теоретические неопределенности были оценены с помощью инструментов SANC: МК генератора ReneSANCe и интегратора MCSANC.

Данная статья состоит из четырех разделов.

В разделе 2 описывается методика расчетов поляризованных сечений с учетом полных однопетлевых ЭС поправок в рамках подхода спиральных амплитуд. Численные результаты и результаты сравнения представлены в разделе 3. В разделе 4 даны выводы статьи.

2. ЭС однопетлевые раиационные поправки. В работе рассматриваются дифференциальные сечения для процессов

$$l^{\pm}(p_1, \chi_1) + l^{\pm}(p_2, \chi_2) \rightarrow l^{\pm}(p_3, \chi_3) + l^{\pm}(p_4, \chi_4) \quad (+\gamma(p_5, \chi_5)),$$
(3)

с индексом $l = e, \mu$ и произвольной продольной поляризацией исходных частиц (χ соответствует спиральности частиц).

В системе SANC все процессы рассчитываются, используя схему перенормировки на массовой поверхности в двух калибровках: в R_{ξ} калибровке и унитарной калибровке в качестве проверки.

Подход спиральных амлитуд применяется ко всем компонентам однопетлевых сечений:

$$\sigma^{\text{one-loop}} = \sigma^{\text{Born}} + \sigma^{\text{virt}}(\lambda) + \sigma^{\text{soft}}(\lambda, \omega) + \sigma^{\text{hard}}(\omega), (4)$$

где σ^{Born} – сечение в борновском приближении, σ^{virt} – вклад виртуальных (петлевых) поправок, $\sigma^{\text{soft}(\text{hard})}$ – вклад мягкого (жесткого) излучения фотонов (энергия жестких фотонов $E_{\gamma} > \omega$). Зависимость от вспомогательных параметров λ ("масса фотона") и ω исчезает после суммирования. Соответствующие выражения для сечения меллеровского рассеяния не могут быть проинтегрированы по всем углам, так как интеграл расходится.

2.1. Борновская и виртуальная части. Для вычисления виртуальной части на однопетлевом уровне в базисе процедур SANC необходимо рассмотреть ковариантную амплитуду. Ковариантная однопетлевая амплитуда соответствует результату прямого стандартного расчета всех диаграмм, вносящих вклад в данный процесс на однопетлевом уровне. Она представляется в определенном базисе, составленном из матриц Дирака и/или внешних импульсов (структур), свернутых с векторами поляризации векторных бозонов, $\epsilon(k)$, если таковые имеются.

Эта амплитуда может быть записана в явном виде с помощью скалярных формфакторов. Все массы, кинематические факторы, константы связи и другие параметры входят в эти скалярные функции \mathcal{F}_i , в то время как тензорные структуры с индексами Лоренца, составленные из матриц Дирака, задаются базисом.

Число формфакторов равно числу независимых структур.

Петлевые интегралы выражаются в терминах стандартных скалярных функций Пассарино-Вельтмана A_0, B_0, C_0, D_0 [45].Ковариантная амплитуда на однопетлевом уровне для случая аннигиляции в вакуум $4f \rightarrow 0$ была рассмотрена в [46]. Напомним, что в SANC любая амплитуда однопетлевого процесса всегда вычисляется как амплитуда аннигиляции в вакуум со со всеми четырьмя входящими импульсами. Поэтому полученные универсальные скалярные формфакторы для амплитуды процесса $4f \rightarrow 0$, после соответствующей перестановки их аргументов, могут использоваться при описании поправок для этого конкретного случая с помощью разворота в t и u каналов.

Виртуальный (борновский) вклад в сечение процессов (3) может быть записан следующим образом:

$$\frac{d\sigma_{\chi_1\chi_2}^{\text{virt(Born)}}}{d\cos\vartheta_3} = \pi\alpha^2 \frac{\beta_s}{2s} |\mathcal{H}_{\chi_1\chi_2}^{\text{virt(Born)}}|^2, \tag{5}$$

где

$$\mathcal{H}_{\chi_1\chi_2}^{\mathrm{virt}(\mathrm{Born})}|^2 = \sum_{\chi_3,\chi_4} |\mathcal{H}_{\chi_1\chi_2\chi_3\chi_4}^{\mathrm{virt}(\mathrm{Born})}|^2, \tag{6}$$

а m_l – масса лептона и $\beta_s = \sqrt{1 - \frac{4m_l^2}{s}}, \vartheta_3$ – угол между векторами p_1 и p_3 в с.ц.м.

Дифференциальное сечение рассматривается как функция восьми спиральных амплитуд. Они зависят от кинематических переменных, констант связи и семи скалярных формфакторов. Спинорные индексы $\mathcal{H}_{\chi_1\chi_2\chi_3\chi_4}$ обозначают знаки проекций спинов фермионов на соответствующие моменты. Были введены следующие определения: $c^{\pm} = 1 \pm \cos \vartheta_3$, где угол рассеяния ϑ_3 связан с мандельстамовскими инвариантами t, u:

$$t = 2m_l^2 - \frac{s}{2}(1 + \beta_l^2 \cos \vartheta_3),,$$
 (7)

$$u = 2m_l^2 - \frac{s}{2}(1 - \beta_l^2 \cos \vartheta_3).$$
 (8)

Полный учет масс электронов дает дополнительные слагаемые, пропорциональные фактору m_l . Такое приближение необходимо в расчетах при низких энергиях.

Набор соответствующих спиральных амплитуд в канале *t* для этого случая выглядит как:

$$\begin{aligned} \mathcal{H}_{\mp\mp\mp\mp} &= \frac{1}{t} \left[(c^+k - 4m_l^2) \tilde{F}_{gg} + \chi_Z(t) \Big((c^+k - 4m_l^2) \tilde{F}_{qq} \\ &+ 4(k \mp \sqrt{\lambda_e}) \tilde{F}_{ll} + 2(c^+k - 4m_l^2 \mp 2\sqrt{\lambda_e}) \tilde{F}_{lq} \\ &+ 2c^- m_l^2 k \left[\tilde{F}_{qd} + (k \mp \sqrt{\lambda_e}) \tilde{F}_{ld} \right] \Big) \right], \end{aligned}$$

$$\mathcal{H}_{\mp --\pm} = \sin \vartheta_3 \frac{\sqrt{sm_l}}{t} \bigg[\tilde{F}_{gg} + \chi_Z(t) \Big(\tilde{F}_{qq} + 2\tilde{F}_{lq} - k\tilde{F}_{qd} - (k - \sqrt{\lambda_e})\tilde{F}_{ld} \Big) \bigg],$$

$$\mathcal{H}_{\pm ++\mp} = -\mathcal{H}_{\mp --\pm}(\sqrt{\lambda_e} \to -\sqrt{\lambda_e}),$$

$$\mathcal{H}_{\mp\mp\pm\pm} = -\frac{m_l^2}{t} \Biggl[2c^+ \tilde{F}_{gg} + \chi_Z(t) \Bigl(2c^+ (\tilde{F}_{qq} + 2\tilde{F}_{lq}) + 8\tilde{F}_{ll} - sc^+ (\tilde{F}_{ld} + \tilde{F}_{qd}) \Bigr) \Biggr],$$

Письма в ЖЭТФ том 115 вып. 9-10 2022

$$\mathcal{H}_{\mp\pm\mp\pm} = -\frac{m_l^2}{t} \bigg[2c^+ \tilde{F}_{gg} + \chi_Z(t) \Big(2c^+ (\tilde{F}_{qq} + 2\tilde{F}_{lq}) \\ - sc^+ (\tilde{F}_{ld} + \tilde{F}_{qd}) \Big) \bigg],$$

$$\mathcal{H}_{-\mp\pm-} = -\mathcal{H}_{+\mp\pm+},$$

$$\mathcal{H}_{+\mp\pm+} = \sin \vartheta_3 \frac{\sqrt{sm_l}}{t} \bigg[\tilde{F}_{gg} + \chi_Z(t) \Big(\tilde{F}_{qq} + 2\tilde{F}_{lq} \\ - 2m_l^2 (\tilde{F}_{ld} + \tilde{F}_{qd}) \Big) \bigg],$$

$$\mathcal{H}_{\mp\pm\pm\mp} = \frac{c^{-}}{t} \Biggl[k\tilde{F}_{gg} + \chi_Z(t) \Bigl(k(\tilde{F}_{qq} + 2\tilde{F}_{lq}) - 2m_l^2 [(k \pm \sqrt{\lambda_e})\tilde{F}_{ld} + k\tilde{F}_{qd}] \Bigr) \Biggr].$$

Здесь $\chi_Z(t)$ – отношение Z/γ пропагаторов:

$$\chi_Z(t) = \frac{1}{4s_W^2 c_W^2} \frac{t}{t - M_Z^2}.$$
(9)

Заметим, что использование формфакторов с *тильдой*, содержащих константы, приводит к сокращению формул для амплитуд, тогда как явные выражения даются для *нетильдованных* величин.

Выражения для формфакторов с *тильдой* могут быть записаны следующим образом:

$$\tilde{F}_{gg} = (I_l^{(3)})^2 F_{gg}(s, t, u),$$
(10)

$$\tilde{F}_{ll} = \delta_l^2 F_{ll}(s, t, u),$$

$$\tilde{F}_{qq} = I_l^{(3)} \delta_l F_{qq}(s, t, u),$$

$$\tilde{F}_{lq} = \delta_l I_l^{(3)} F_{lq}(s, t, u),$$

$$\tilde{F}_{ld} = (I_l^{(3)})^2 F_{ld}(s, t, u),$$

$$\tilde{F}_{qd} = \delta_l I_l^{(3)} F_{qd}(s, t, u).$$

Также используются следующие константы

$$I_l^{(3)}, \ \sigma_l = v_l + a_l, \ \delta_l = v_l - a_l, \ s_W = \frac{e}{g}, \ c_W = \frac{M_W}{M_Z}$$

с индексом $l = e, \mu$.

Для того, чтобы получить спиральные амплитуды на борновском уровне, необходимо положить $F_{gg,ll,lq,ql,qq} = 1$ и $F_{ld,qd} = 0$.

2.2. Поправки от излучения реальных фотонов. Реальные поправки состоят из мягких и жестких радиационных вкладов. Они рассчитываются с помощью соответствующих модулей. Мягкое фотонное излучение имеет борновскую кинематику, в то время как фазовое пространство жесткого излучения имеет дополнительную частицу – фотон.

Вклад мягкого фотонного излучения имеет следующий вид:

$$\sigma^{\text{soft}} = -Q_e^2 \frac{2\alpha}{\pi} \sigma^{\text{Born}} \left[\left(1 + \frac{1 - 2m_l^2/s}{\beta_s} \ln x^2 \right) \ln \left(\frac{4\omega^2}{\lambda^2} \right) + \frac{1}{\beta_s} \left[-\ln x^2 + (1 - 2m_l^2/s) \left(\text{Li}_2 \left(1 - x^2 \right) - \text{Li}_2 \left(1 - \frac{1}{x^2} \right) \right) \right] - F(t) - F(u) \right], \quad (11)$$

где

$$\begin{split} F(I) &= \frac{1 - 2m_l^2/I}{\beta_I} \bigg[\ln y_I \ln \left(\frac{4\omega^2}{\lambda^2}\right) + \text{Li}_2 \left(1 - \frac{y_I x}{z_I}\right) \\ - \text{Li}_2 \left(1 - \frac{x}{z_I}\right) + \text{Li}_2 \left(1 - \frac{y_I}{z_I x}\right) - \text{Li}_2 \left(1 - \frac{1}{z_I x}\right) \bigg], \\ \beta_I &= \sqrt{1 - \frac{4m_l^2}{I}}, \qquad x = \frac{\sqrt{s}}{m_l} \frac{1 + \beta_s}{2}, \\ y_I &= 1 - \frac{I}{m_l^2} \frac{1 + \beta_I}{2}, \qquad z_I = \frac{m_l}{\sqrt{s}} \left(1 + y_I\right), \end{split}$$

с индексом I = t, u.

При представлении результатов для *вклада* жесткого фотонного излучения используется универсальный модуль для процесса $4f\gamma \rightarrow 0$ с учетом всех масс [41] путем соответствующего разворота в нужный канал.

3. Численные результаты

3.1. Древесный уровень. В этом разделе рассчитаные поляризованные сечения на древесном уровне для борновского и жесткого фотонного излучения сравниваются с результатами кодов CalcHEP [34] и WHIZARD [47, 37, 48].

Таблица 1. Детальное тройное сравнение между SANC (вторая колонка), WHIZARD (третья колонка), и CalcHEP (четвертая колонка) сечения жесткого фотонного излучения

P_{e^-},P_{e^-}	S	W	С
0, 0	170.12(1)	170.13(1)	170.11(2)
$^{-1,-1}$	284.58(1)	284.58(1)	284.55(2)
-1, 1	74.00(1)	74.00(1)	74.00(2)
1, -1	74.01(1)	74.02(1)	74.00(2)
1, 1	247.90(1)	247.90(1)	247.86(2)

Результаты рассчитаны в ЭС схеме $\alpha(0)$ с фиксированными 100 % поляризованными начальными состояниями для $\sqrt{s} = 250$ ГэВ и угловых ограничений $|\cos \vartheta_e| \leq 0.9$. Для сечений жесткого фотонного

излучения применяется дополнительное условие на энергию фотона $E_{\gamma} \geq \omega = 10^{-4} \sqrt{s}/2.$

Результаты расчетов на уровне борновского сечения согласуются во всех значащих цифрах для всех кодов, поэтому таблица не приводится. Результаты для жесткого фотонного излучения приведены в табл. 1. Обнаружено очень хорошее согласие в пределах статистических ошибок с вышеупомянутыми кодами.

3.2. Однопетлевой уровень. В этом разделе исследуются полные однопетлевые ЭС радиационные поправки и поляризационные эффекты для меллеровского рассеяния в области высоких энергий. Численные оценки представлены для полных (интегральных) сечений (σ , пб) и относительных поправок (δ , %), а также для дифференциальных распределений по углу рассеяния $\cos \vartheta_3$. Ниже рассматриваются электронный e^- ($e^-e^- \rightarrow e^-e^-(\gamma)$) и мюонный μ^+ ($\mu^+\mu^+ \rightarrow \mu^+\mu^+(\gamma)$) каналы реакции (3).

3.2.1. Интегральные сечения. На ускорителе СLIС планируется достичь высокой светимости e^-e^- столкновения для энергий в с.ц.м. от 380 ГэВ до 3 ТэВ. Основными энергиями являются $\sqrt{s_{\text{CLIC}}}$: 380 ГэВ, 1.5 и 3 ТэВ.

Ускоритель ILC предоставляет много возможностей для измерений с энергией в диапазоне от 90 ГэВ до 1 ТэВ. Рассматриваются три основные энергии в с.ц.м. $\sqrt{s_{\rm ILC}}$: 250 ГэВ, 500 ГэВ и 1 ТэВ, с поляризацией электронов $P_{e^-} = \pm 0.8$.

В таблице 2 представлены интегральные борновские и однопетлевые сечения в пб и относительные поправки в процентах в e^- -канале для энергий в с.ц.м. $\sqrt{s_{\rm ILC\&CLIC}}$ и поляризации начальной частицы (2) в ЭС схеме $\alpha(0)$.

В условиях эксперимента μ TRISTAN энергия предполагается равной $\sqrt{s_{\mu\text{TRISTAN}}}$: 0.6, 1, 2 ТэВ и поляризация обоих пучков будет достигать $P_{\mu^+} = \pm 0.8$ для μ^+ -канала. В таблице 3 представлены те же наблюдаемые величины, что и в таблице 2 в условиях эксперимента μ TRISTAN.

Как видно из табл. 2 и 3, использование поляризованных пучков частиц значительно увеличивает поперечное сечение рассеяния. В то же время радиационные поправки увеличиваются при $P_{e^-} = (0.8, 0.8)$ и уменьшаются при $P_{e^-} = (-0.8, -0.8)$ по сравнению с неполяризованным случаем в области энергий в с.ц.м. $\sqrt{s} = 250 - 1000$ ГэВ. При более высоких энергиях в с.ц.м. поляризация $P_{e,\mu} = (\pm 0.8, \pm 0.8)$ также увеличивает сечение, но абсолютная величина относительной поправка становится больше, чем для неполяризованного.

P_{e^-}, P_{e^-}	0, 0	0.8, 0.8	-0.8, -0.8		
$\sqrt{s} = 250$ ГэВ					
$\sigma^{\mathrm{Born}},$ пб	94.661(1)	120.152(1)	136.377(1)		
$\sigma^{\mathrm{one-loop}},$ пб	103.906(2)	134.976(2)	147.224(2)		
$\delta,\%$	9.77(1)	12.34(1)	7.95(1)		
$\sqrt{s} = 380$ ГэВ					
$\sigma^{\mathrm{Born}},$ пб	42.969(1)	55.739(1)	65.487(1)		
$\sigma^{ m one-loop},$ пб	47.327(1)	63.264(1)	70.345(1)		
$\delta,\%$	10.14(1)	13.50(1)	7.42(1)		
$\sqrt{s} = 500$ ГэВ					
$\sigma^{\mathrm{Born}},$ пб	25.498(1)	33.430(1)	39.984(1)		
$\sigma^{\mathrm{one-loop}},$ пб	28.068(1)	38.171(2)	42.627(2)		
$\delta,\%$	10.08(1)	14.18(1)	6.61(1)		
$\sqrt{s} = 1$ TəB					
$\sigma^{\mathrm{Born}},$ пб	6.657(1)	8.850(1)	10.865(1)		
$\sigma^{\mathrm{one-loop}},$ пб	7.218(1)	10.229(1)	11.104(1)		
$\delta,\%$	8.42(1)	15.58(1)	2.20(1)		
$\sqrt{s} = 1.5 \text{ T}$ əB					
$\sigma^{\mathrm{Born}},$ пб	2.992(1)	3.989(1)	4.928(1)		
$\sigma^{ m one-loop},$ пб	3.185(1)	4.635(1)	4.827(1)		
$\delta,\%$	6.46(1)	16.19(1)	-2.06(1)		
$\sqrt{s} = 3$ TəB					
$\sigma^{\mathrm{Born}},$ пб	0.7536(1)	1.007(1)	1.249(1)		
$\sigma^{ m one-loop},$ пб	0.7665(1)	1.177(1)	1.103(1)		
$\delta,\%$	1.71(1)	16.94(1)	-11.70(1)		

Таблица 2. Интегральные борновское и однопетлевое сечения в пб и относительные поправки в процентах в e^- -канале для энергии в с.ц.м. $\sqrt{s}_{ILC\&CLIC}$ и набора (2) поляризации начальной частицы в ЭС схеме $\alpha(0)$

Таблица 3. Интегральное борновское и однопетлевое сечение в пб и относительные поправки в процентах в μ^+ -канале для энергии в с.ц.м. $\sqrt{s_{\mu \text{TRISTAN}}}$ и поляризации начальных частиц (2) в ЭС схеме $\alpha(0)$

P_{μ^+}, P_{μ^+}	0, 0	0.8, 0.8	-0.8, -0.8		
$\sqrt{s} = 600$ ГэВ					
$\sigma^{\mathrm{Born}},$ пб	17.974(1)	23.690(1)	28.601(1)		
$\sigma^{\mathrm{one-loop}},$ пб	19.715(1)	27.064(1)	30.160(1)		
$\delta,\%$	9.69(1)	14.24(1)	5.45(1)		
$\sqrt{s} = 1$ TəB					
$\sigma^{\mathrm{Born}},$ пб	6.6572(1)	8.8497(1)	10.8648(1)		
$\sigma^{\mathrm{one-loop}},$ пб	7.2019(1)	10.1930(1)	11.0589(2)		
$\delta,\%$	8.18(1)	15.18(1)	1.79(1)		
$\sqrt{s} = 2$ TəB					
$\sigma^{\mathrm{Born}},$ пб	1.6903(1)	2.2559(1)	2.7935(1)		
$\sigma^{\mathrm{one-loop}},$ пб	1.7646(1)	2.6195(1)	2.6210(1)		
$\delta,\%$	4.40(1)	16.12(1)	-6.17(1)		

3.2.2. Дифференциальные сечения. На рисунках 1 и 2 показаны дифференциальные распределения сечений (в пб) в лидирующем, борновском (LO) и следующим за лидирующем, однопетлевом, порядках ЭС поправок (EW NLO), а также относительные поправки (в %) для e^- - и μ^+ -каналов для энергий в с.ц.м. $\sqrt{s} = 250,1000$ ГэВ как функция $\cos \theta_3$.

Рис. 1. (Цветной онлайн) Борновское (LO) и однопетлевое сечение (NLO EW) (вверху) и относительная поправка (внизу) в e^- -канале для энергии в с.ц.м. $\sqrt{s} = 250 \, \Gamma$ эВ как функция соз θ_3

Рис. 2. (Цветной онлайн) Борновское (LO) и однопетлевое сечение (NLO EW) (вверху) и относительные поправки (внизу) в e^- - и μ^+ -каналах для энергии в с.ц.м. $\sqrt{s}=1000$ ГэВ как функция соз θ_3

Дифференциальные распределения по $\cos \theta_3$ симметричны для всех энергий в с.ц.м. Максимум относительных поправок находится при нулевом угле, а минимум – вблизи $|\cos \theta_3| = 1$. Это связано с доминированием борновского вклада в области $|\cos \theta_3| \approx 1$ из-за пропагатора фотона 1/t(1/u).

Следует отметить, что хотя интегральные относительные поправки для энергии в с.ц.м. $\sqrt{s} = 1000$ ГэВ в e^- - и μ^+ -каналах отличаются всего на 0.4% (см. табл. 2, 3), разница в дифференциальных распределениях больше и составляет около 5–6 % при $\cos \theta_3 = 0.$

5. Заключение. В настоящей работе были вычислены полные однопетлевые радиационные поправки, обусловленные КЭД и чисто слабыми вкладами. Они были внедрены в полностью дифференциальный Монте-Карло генератор событий ReneSANCe и интегратор MCSANC.

Для оценки виртуальной части и вклада излучения мягких фотонов представлены явные выражения для спиральных амплитуд.

При описании жесткого фотонного излучения использовался модуль SANC спиральных амплитуд [41].

Были получены результаты, представляющие интерес для неполяризованного FCCee и поляризованных ILC, CLIC, μ TRISTAN экспериментов.

Поскольку измерение поляризации пучка ожидается на уровне 1% [19, 49], необходимо включить в расчет больше, чем однопетлевые электрослабые радиационные поправки (ведущие КЭД логарифмы и электрослабые двухпетлевые вклады) для обеспечения необходимого уровня теоретической поддержки.

Созданный набор программ системы SANC позволяет исследовать однопетлевые поправки и поправки высшего порядка для любой поляризации, оценить вклад выбранного состояния спиральности и учесть массовые эффекты.

Работа поддержана Российским фондом фундаментальных исследований, проект # 20-02-00441.

- 1. ILC homepages https://www.linearcollider.org/ILC.
- A. Irles, R. Poschl, F. Richard, and H. Yamamoto, Complementarity between ILC250 and ILC-GigaZ, in Linear Collider Community Meeting Lausanne, Switzerland, April 8-9, 2019 (2019), 1905.00220.
- G. Moortgat-Pick, H. Baer, M. Battaglia et al. (Collaboration), Eur. Phys. J. C **75**(8), 371 (2015); 1504.01726.
- H. Baer, T. Barklow, K. Fujii et al. (Collaboration), 1306.6352.
- ECFA/DESY LC Physics Working Group Collaboration, E. Accomando, A. Andreazza, H. Anlauf et al., Phys. Rep. 299, 1 (1998); hep-ph/9705442.
- CLIC Physics Working Group Collaboration,
 E. Accomando, A. Aranda, E. Ateser et al., Physics at the CLIC multi-TeV linear collider, in Proceedings, 11th International Conference on Hadron spectroscopy (Hadron 2005): Rio de Janeiro, Brazil, August 21–26, 2005 (2004), hep-ph/0412251.
- 7. FCC-ee homepages http://tlep.web.cern.ch.
- FCC Collaboration, A. Abada, M. Abbrescia, S.S. AbdusSalam et al., Eur. Phys. J. ST 228(5), 1109 (2019).

- FCC Collaboration, A. Abada, M. Abbrescia, S.S. AbdusSalam et al., Eur. Phys. J. C 79(6), 474 (2019).
- 10. A. Blondel and P. Janot, 1912.11871.
- A. Blondel, J. Gluza, S. Jadach et al. (Collaboration), Standard model theory for the FCC-ee Tera-Z stage, in Mini Workshop on Precision EW and QCD Calculations for the FCC Studies: Methods and Techniques CERN, Geneva, Switzerland, January 12-13, 2018, CERN, CERN, Geneva (2019), v.3; 1809.01830.
- 12. CLIC homepages http://clic-study.web.cern.ch.
- CLIC, CLICdp Collaboration, M. J. Boland, U. Felzmann, P. J. Giansiracusa et al., 1608.07537.
- CLICdp, CLIC Collaboration, T.K. Charles, P.J. Giansiracusa, T.G. Lucas et al., CERN Yellow Rep. Monogr. 1802, 1 (2018); 1812.06018.
- 15. CEPC homepages http://cepc.ihep.ac.cn.
- K. Fujii, C. Grojean, M. E. Peskin et al. (Collaboration), 2007.03650.
- Y. Hamada, R. Kitano, R. Matsudo, H. Takaura, and M. Yoshida, 2201.06664.
- 18. C. Møller, Ann. der Phys. 14, 531 (1932).
- S. Jadach and B.F.L. Ward, Phys. Rev. D 54, 743 (1996).
- N. M. Shumeiko and J. G. Suarez, J. Phys. G 26, 113 (2000); hep-ph/9912228.
- J. C. Montero, V. Pleitez, and M. C. Rodriguez, Phys. Rev. D 58, 094026 (1998); hep-ph/9802313.
- A. Denner and S. Pozzorini, Eur. Phys. J. C 7, 185 (1999); hep-ph/9807446.
- A. Czarnecki and W. J. Marciano, Int. J. Mod. Phys. A 15, 2365 (2000); hep-ph/0003049.
- 24. G. Alexander and I. Cohen, Nucl. Instrum. Meth. A 486, 552 (2002); hep-ex/0006007.
- F.J. Petriello, Phys. Rev. D 67, 033006 (2003); hep-ph/0210259.
- A. Ilyichev and V. Zykunov, Phys. Rev. D 72, 033018 (2005); hep-ph/0504191.
- MOLLER Collaboration, J. Benesch, P. Brindza, R. D. Carlini et al., 1411.4088.
- A. Aleksejevs, S. Barkanova, A. Ilyichev, and V. Zykunov, Phys. Rev. D 82, 093013 (2010); 1008.3355.
- A.I. Ahmadov, Y.M. Bystritskiy, E.A. Kuraev, A.N. Ilyichev, and V.A. Zykunov, Eur. Phys. J. C 72, 1977 (2012); 1201.0460.
- A. G. Aleksejevs, S. G. Barkanova, Y. M. Bystritskiy, E. A. Kuraev, and V. A. Zykunov, Phys. Part. Nucl. Lett. 13(3), 310 (2016); 1508.07853.
- J. Erler, R. Ferro-Hernández, and A. Freitas, 2202.11976.
- I. Akushevich, H. Gao, A. Ilyichev, and M. Meziane, Eur. Phys. J. A 51(1), 1 (2015).

Письма в ЖЭТФ том 115 вып. 9-10 2022

- F. Krauss, R. Kuhn, and G. Soff, JHEP 02, 044 (2002); hep-ph/0109036.
- A. Belyaev, N. D. Christensen, and A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013); 1207.6082.
- 35. J. Yuasa, J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y. Kurihara, M. Kuroda, N. Nakazawa, Y. Shimizu, and H. Tanaka, Prog. Theor. Phys. Suppl. 138, 18 (2000); hep-ph/0007053.
- G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, and Y. Shimizu, Phys. Rep. 430, 117 (2006); hep-ph/0308080.
- W. Kilian, T. Ohl, and J. Reuter, Eur. Phys. J. C 71, 1742 (2011); 0708.4233.
- A. Afanasev, E. Chudakov, A. Ilyichev, and V. Zykunov, Comput. Phys. Commun. **176**, 218 (2007); hep-ph/0603027.
- D. Bardin, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, A. Arbuzov, R. Sadykov, and S. Bondarenko, Phys. Rev. D 98(1), 013001 (2018); 1801.00125.
- S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, R. Sadykov, and V. Yermolchyk, Phys. Rev. D 100(7), 073002 (2019); 1812.10965.
- 41. S. Bondarenko, Y. Dydyshka, L. Kalinovskaya,

R. Sadykov, and V. Yermolchyk, Phys. Rev. D 102(3), 033004 (2020); 2005.04748.

- S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, R. Sadykov, and V. Yermolchyk, 2111.11490.
- S. Bondarenko, L. Kalinovskaya, and A. Sapronov, 2201.04350.
- 44. R. Sadykov and V. Yermolchyk, Comput. Phys. Commun. **256**, 107445 (2020); 2001.10755.
- 45. G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160, 151 (1979).
- A. Andonov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, and G. Nanava, Phys. Part. Nucl. 34, 577 (2003); hep-ph/0207156.
- T. Ohl, WHiZard and O'Mega, in Proceedings, LoopFest V: Radiative Corrections for the International Linear Collider: Multi-loops and Multi-legs: SLAC, Menlo Park, California, June 19-21, 2006 (2006).
- W. Kilian, S. Brass, T. Ohl, J. Reuter, V. Rothe, P. Stienemeier, and M. Utsch, New Developments in WHIZARD Version 2.6, in International Workshop on Future Linear Collider (LCWS2017) Strasbourg, France, October 23-27, 2017 (2018); 1801.08034.
- T. Abe, N. Arkani-Hamed, D. Asner et al. (Collaboration), hep-ex/0106058.