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Since discovery of superconductivity in the quasi-
two-dimensional (Q2D) conductor Sr2RuO4 [1], it has
been intensively investigated for more than 25 years (for
reviews, see [2, 3]). Some analogy of this Q2D super-
conductor with the superfluid 3He was recognized from
the beginning and the existence of a chiral triplet su-
perconducting phase in the Sr2RuO4 was suggested [4].
This scenario of superconducting pairing was supported
by the observations of no change of the Knight shift
between normal and superconducting phases [5, 6] and
breaking of the time reversal symmetry in the super-
conducting phase [7, 8]. On the other hand, there were
arguments against the chiral triplet superconductivity
scenario, which were almost ignored that time by sci-
entific community. One of the first argument was the
paramagnetic limitation of the parallel upper critical
magnetic field in Sr2RuO4 [9, 10]. In addition, the pre-
dicted in the chiral triplet scenario edge currents were
not found in the Sr2RuO4 [11,12] but were found ze-
ros of superconducting gap on Q2D Fermi surface (FS)
[13, 14], which is against the fully gaped chiral triplet
scenario [4]. Recently, the strongest experimental argu-
ment against the triplet scenario of superconductivity
in Sr2RuO4 was published [15], where strong drop of
the Knight shift in superconducting state of the above
mentioned material was experimentally discovered.

As seen from the above discussion, the situation
with the chiral triplet scenario of superconductivity
in Sr2RuO4 is still rather controversial. The goal of
our Letter is two-fold. First, we improve and make
our pioneering argument [9] in favor of singlet su-
perconductivity in Sr2RuO4 to be firm. The point
is that in [9] (see also recent [16]) we calculated
the ratio H‖(0)/(|dHGL

‖ /dT |T=Tc
Tc) = 0.75, where

|dHGL
‖ /dT |T=Tc

is the so-called Ginzburg–Landau (GL)
slope, for s-wave Q2D superconductivity and compared
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it with the experimental one, 0.45–0.5 [17–19]. To make
our argument against the chiral triplet scenario to be
firm, below we calculate the above mentioned ratio ex-
actly for the in-plane isotropic chiral triplet supercon-
ductor with d vector order parameter [4, 20],

d = z ∆0 (kx ± iky), (1)

and obtain even stronger inconsistency,

H‖(0) = 0.815 |dHGL
‖ /dT |T=Tc

Tc, (2)

with the experimental values [17–19], where, to the best
of our knowledge, Eq. (2) is the first time obtained in the
Letter. The second our goal is to suggest one more test
for chiral triplet superconductivity, which may already
exist in the slightly in-plane anisotropic Q2D triplet su-
perconductor UTe2 [21] and, as we hope, will be discov-
ered in some other Q2D compounds in the future.

Let us consider a layered superconductor with the
following in-plane isotropic Q2D electron spectrum:

ǫ(p) = ǫ(px, py)− 2t⊥ cos(pzc
∗), t⊥ ≪ ǫF , (3)

where

ǫ(px, py) =
(p2x + p2y)

2m
, ǫF =

p2F
2m

. (4)

[In Equations (3) and (4), t⊥ is the integral of overlap-
ping of electron wave functions in a perpendicular to
the conducting planes direction, m is the in-plane elec-
tron mass, ǫF and pF are the Fermi energy and Fermi
momentum, respectively; ~ ≡ 1.] In a parallel magnetic
field, which is applied along x axis

H = (H, 0, 0), (5)

it is convenient to choose the vector potential of the field
in the form:

A = (0, 0, Hy). (6)
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Using the Matsubara’s Green functions technique
[22], it is possible to derive the following so-called lin-
earized Gor’kov’s equation, determining the parallel up-
per critical magnetic field in the isotropic chiral super-
conductor (1):

∆(φ, y) =
∫ 2π

0
dφ1

2π g cos(φ − φ1)
∫∞
|y−y1|>d| sinφ1|×

× 2πTdy1

vF | sinφ1| sinh

(

2πT |y−y1|
vF | sinφ1|

) ×

× J0

[

2t⊥ωc

v2
F | sinφ1| (y

2 − y21)

]

∆(φ1, y1), (7)

where g is the effective electron coupling constant, d is
the cut-off distance, J0(...) is the zero order Bessel func-
tion. In Equation (7) the superconducting gap ∆(φ, y)

depends on a center of mass of the BCS pair, y, and on
the position on the cylindrical FS (4), where φ and φ1
are the polar angles counted from x axis.

By means of the Ginzburg–Landau (GL) procedure
[16] to the Gor’kov’s Eq. (7) we find the so-called GL
slope for parallel upper critical magnetic field:

HGL
‖ (T ) =

(

φ0
2πξ‖ξ⊥

)

τ =

[

8
√
2π2cT 2

c

7ζ(3)evF t⊥c∗

]

τ, (8)

where τ = (Tc − T )/Tc.
More complicated problem is to solve Eq. (7) at

T = 0 and, thus, to find the upper critical magnetic
field at zero temperature, H‖(0). This is possible to do
only by means of numerical calculations. Here, we sum-
marize procedure of the numerical solution of Eq. (7)
and obtain the following new result:

H‖(0) = 10.78
cT 2

c

evF t⊥c∗
. (9)

Note that solution for the superconducting gap, ∆(y) of
Eq. (7) is not of an exponential shape and changes its
sign several times in space, in contrast to the 3D case.
Using Eqs. (8) and (9), it is possible to obtain Eq. (2).

As we already mentioned, in the candidate for
the chiral triplet in-plane isotropic superconductivity,
Sr2RuO4, the corresponding experimental coefficients
[17–19] are almost two times smaller than the calculated
in this Letter (2), which is a strong argument against
the chiral triplet scenario.

The author is thankful to N. N. Bagmet (Lebed) for
useful discussions.

This is an excerpt of the article “A chi-
ral triplet quasi-two-dimensional superconduc-
tor in a parallel magnetic field”. Full text of
the paper is published in JETP Letters journal.
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