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Cu-site disorder in CuAl2O4 as studied by XPS spectroscopy
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The copper aluminate (CuAl2O4) find a various ap-

plications in modern techniques [1-3]. Therefore much

attention is paid to fundamental properties that are de-

termined primarily by its crystal structure of CuAl2O4.

In CuAl2O4 spinel the Cu2+-ions must be located in

the center of A-tetrahedral sites and non-magnetic Al3+

ions are in the center of octahedral B-sites. In this case,

the Cu2+ d-states split into t2 and e states. The de-

generacy of t2g-states can be removed due to spin-orbit

coupling (SOC) or Jahn–Teller distortion, which low-

ers the Td symmetry of the crystal field. As a rule, the

experimental results show that the crystal structure of

CuAl2O4 at atmospheric pressure is cubic without any

signs of tetragonal distortion [2].

However, possible stabilization of the cubic phase

inevitable leads to formation of the spin-orbit entan-

gled Jeff = 1/2 state and strong exchange anisotropy,

which may result in the spin-liquid ground state [4, 5].

This hypothesis was used in particular to explain ab-

sence of the long-range magnetic order in CuAl2O4

even at very low temperature [5]. Alternative explana-

tion is based on presence of intrinsic disorder between

tetra and octa sites, which prevents onset of antiferro-

magnetism.

It is no coincidence that in some early works it was

assumed that about 30 % of Cu2+ ions occupy octa-

hedral positions [2, 3]. In this connection, of particular

interest is the use of local spectral methods sensitive to

the nearest surrounding of the exciting atoms. In the

present paper we applied the of X-ray photoelectron

spectroscopy (XPS) which is an element- and a site-

selective probe.
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CuAl2O4 was prepared from a stoichiometric mix-

ture of Al2O3 (99.9 %) and CuO (99.9 %). The mixture

was pressed into a pellet and annealed on Pt foil at

1193 K for 84 h and at 1293 K for 38 h in air with several

intermediate grindings. PHI 5000 VersaProbe spectrom-

eter were used for XPS measurements. X-ray spot size

was 200µm and Al Kα (1486 eV) was used. The calcu-

lations of CuAl2O4 were carried out using the Vienna

ab initio simulation package [6].

Figure 1 displays XPS Cu 2p (a) and Auger Cu LMM

(b) spectra of CuAl2O4. The XPS Cu 2p3/2 spectrum

has two peak structure (Cu1 and Cu2) and is shifted to

high-energy side with respect to that of Cu and Cu2O.

Another feature of bivalent copper in CuAl2O4 is the

presence of a CT (charge transfer) satellite S at the same

binding energy as in CuO arising from multiplet split-

ting effects due to the interaction between the Cu 2p

core hole and the 3d9 electronic configuration [7]. The

Auger Cu LMM spectra also provide the evidence that

the main oxidation state of copper is 2+ [8]. It is gen-

erally believed that CuAl2O4 at atmospheric pressure

is in the cubic phase without any signs of tetragonal

distortion [5]. The spin-orbit coupling can be responsi-

ble for suppression of the Jahn–Teller distortions and

absence of corresponding splitting in the Cu-t2 states

[9]. However, the local symmetry breaking induced by

Jahn–Teller distortions cannot be completely ruled out,

since for this the spin-orbit coupling constant λ must

exceed some critical value [10].

The energy difference of Cu1 and Cu2 peaks in XPS

Cu 2p spectra is found around 1.2 eV, which is much

larger than possible splitting due to both the spin-orbit

coupling or the crystal-field splitting because of the

Jahn–Teller distortions. In fact this energy difference
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Fig. 1. (Color online) XPS Cu 2p (a) and Auger Cu LMM (b) spectra of CuAl2O4. The reference spectra are taken from [7, 8]

is comparable with value fixed in splitting of Cu L XAS

spectra [11] and the ratio of their intensities suggests

that the Cu1 and Cu2 peaks correspond to the contribu-

tions of tetra- and octa-sites, respectively and estimates

degree of disorder in 30 %. Therefore, we can conclude

that the independent site-selective and element-selective

X-ray measurements confirm a finite site-disorder in

CuAl2O4.

The comparison of the obtained calculations results

shows that taking into account the spin-orbit interaction

does not lead to significant changes in the distribution

of the total density of occupied states.

In conclusion, our results show the presence of a sub-

stantial Cu-Al disorder by the XPS measurements. This

disorder may affect formation of an antiferromagnetic

order and development of static Jahn–Teller distortions.
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