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It is well known that superconductivity at zero

temperature is usually destroyed in any superconduc-

tor by either the upper orbital critical magnetic field,

Hc2(0), or the so-called Clogston paramagnetic limit-

ing field, Hp [1]. These are due to the fact that, in

the traditional singlet Cooper pair, the electrons pos-

sess opposite momenta and opposite spins. By present

moment, there are also known several superconduct-

ing phases, which can exist above Hc2(0) and Hp. In-

deed, the paramagnetic limit, Hp, can be absent for

some triplet superconductors (see, for example, UTe2
[2–5]). Alternatively, for singlet superconductivity, the

superconducting phase can exceed the Clogston limit by

creating the non-homogeneous Fulde–Ferrell–Larkin–

Ovchinnikov (FFLO or LOFF phase) [6, 7]. On the other

hand, if Hc2(0) tries to destroy superconductivity, then

quantum effects of electron motion in a magnetic field

can, in principle, restore it as the Reentrant Supercon-

ducting (RS) phase [8–17]. Although there are numer-

ous experimental results, confirming the existence of the

FFLO phase in several Q2D superconductors, there ex-

ist only a few experimental works [2–5], where the pre-

sumably RS phase revives in ultrahigh magnetic fields

due to quantum effects of electron motion in a magnetic

field in one compound – UTe2. On the other hand, the

above mentioned unique RS phenomenon has been the-

oretically predicted for a variety of Fermi surfaces: for

Q1D [8–10], for isotropic 3D [11], and for Q2D super-

conductors [12–17].

Recently, the FFLO phase has been found by Lortz

and collaborators in the Q2D compound NbS2 in a par-

allel magnetic filed [18]. The peculiarity of this work

is that at relatively low magnetic fields (i.e., in the

Ginzburg–Landau (GL) area [1]) the orbital effect of

the field partially destroys superconductivity but, at

high magnetic fields, everything looks like there is no
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any orbital effect against superconductivity. The aim

of our paper is to show that these happen due to the

reentrant nature of the quantum effects of electron mo-

tion in a parallel magnetic field, theoretically predicted

and considered in [12–17]. To this end, we derive the

so-called gap equation, determining the upper critical

field in slightly inclined magnetic field, which directly

takes into account quantum effects of electron motion

in a parallel magnetic field. The physical origin of the

above mentioned quantum effects [8, 12] is related to

the Bragg reflections from the Brillouin zone boundaries

during electron motion in a parallel magnetic field. To

compare the obtained results with the existing exper-

imental data, we derive the gap equation both for a

strictly parallel magnetic field and for a magnetic field

with some perpendicular component. The latter is de-

rived, for the best of our knowledge, for the first time.

We use comparison of these equations with experimental

data [18] to extract the so-called GL coherence lengths

and in-plane Fermi velocity. These allow us to show that,

indeed, in the magnetic fields range, H ≃ 15 T , quan-

tum effects are very strong and completely suppress the

orbital effect against superconductivity. As a result, the

FFLO phase appears with the transition temperature

value like for a pure 2D superconductor, which satisfies

the experimental situation in NbS2 [18]. In our opinion,

this is the first firm demonstration of a reentrant nature

of the orbital effect against superconductivity [8–17].

Below, we consider a Q2D conductor with the follow-

ing electron spectrum, which is an isotropic one within

the conducting plane:

ǫ(p) =
(p2x + p2y)

2m
− 2t⊥ cos(pzd), t⊥ ≪ ǫF =

p2F
2m

, (1)

where m is the in-plane electron mass, t⊥ is the integral

of the overlapping of electron wave functions in a per-

pendicular to the conducting planes direction; ǫF and

pF are the Fermi energy and Fermi momentum, respec-
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tively; ~ ≡ 1. Let us consider slightly inclined with re-

spect to the conducting planes magnetic field,

H = (0, H‖, H⊥), (2)

since the experiments in [18] are done both for the par-

allel and the slightly inclined fields. For our calculations,

it is convenient to choose the following gauge, where the

vector-potential of the magnetic field (2) depends only

on coordinate x:

A = (0, H⊥x,−H‖x). (3)

We apply the Gor’kov’s formulation [19] of the BCS

theory of superconductivity and find the following gap

equation, determining the upper critical magnetic field:

∆(x) =

= U
∫ π

−π
dφ
2π

∫
|x−x1|>d̃| cosφ|

2πTdx1

vF | cosφ| sinh

[
2πT |x−x1|

vF | cosφ|

]

× J0

{
8t⊥

ω‖| cosφ| sin

[
ω‖(x−x1)

2vF

]
sin

[
ω‖(x+x1)

2vF

]}

× cos

[
ω⊥pF sinφ(x2−x2

1)
vF cos(φ)

]
cos

[
2µBH(x−x1)

vF cos(φ)

]
∆(x1), (4)

where µB is the Bohr magneton, d̃ is a cut-off dis-

tance, U is electron-electron interactions constant; ω⊥ =

eH⊥/mc, ω‖ = eH‖/mc, H =
√
H2

‖ +H2
⊥.

In low magnetic fields, Eq. (4) gives the GL behav-

ior of the upper critical magnetic field, whereas at high

magnetic fields, it results in the following correction,

H∗
FFLO, to the FFLO critical magnetic field:

HFFLO −H∗
FFLO

HFFLO
= 2

l2⊥
d2

∫ π

−π

dφ

2π

∫ ∞

0

dz

z

×
sin2

[
ω‖z cosφ

4vF

]

cos2(φ)
cos

(
2µBHz

vF

)
cos

(
2µBHz cosφ

vF

)
, (5)

where l⊥ = 2t⊥/ω‖(H), HFFLO = πTc/2γµB. Numeri-

cal integration of Eq. (5) for ω‖(H = 1T ) = 2 K and

2µBH(H = 1T ) = 1.35 K gives the following result:

H∗
FFLO −HFFLO

HFFLO
= −0.2

l2⊥
d2
. (6)

Finally, taking into account that, at H ≃ 15T , l⊥/d ≃
≃ 0.27, we find that the relative change of the critical

field of the appearance of the FFLO phase is very small:

H∗
FFLO −HFFLO

HFFLO
= −0.015. (7)
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