Роль интерфейсов в формировании тензора диэлектрической проницаемости тонких слоев ферромагнитного металла

С. Г. Овчинников^{+*1}, О. А. Максимова^{+*}, С. А. Лященко⁺, И. А. Яковлев⁺, С. Н. Варнаков⁺

⁺Институт физики им. Л. В. Киренского Сибирского отделения РАН – обособленное подразделение Федерального исследовательского центра "Красноярский научный центр Сибирского отделения РАН", 660036 Красноярск, Россия

*Сибирский федеральный университет, 660041 Красноярск, Россия

Поступила в редакцию 26 июня 2021 г. После переработки 9 июля 2021 г. Принята к публикации 9 июля 2021 г.

Из экспериментальных работ известно, что компоненты тензора диэлектрической проницаемости ε зависят от толщин слоев многослойных тонких пленок, а при нанометровых слоях необходимо дополнительно учитывать межслоевые интерфейсы. Данная работа посвящена ответу на вопрос, с чем связано влияние данных интерфейсов на свойства пленок. Показано, что вклад межзонных матричных элементов для ферромагнитных пленок, имеющих недиагональные компоненты тензора диэлектрической проницаемости, определяет соотношение между диагональной и недиагональной компонентами тензора ε при толщинах ферромагнитного слоя порядка 10 нм.

DOI: 10.31857/S123456782115009X

1. Как известно, интерфейсные явления во многом определяют свойства различных многослойных структур [1, 2]. В полупроводниковых гетероструктурах интерфейсы влияют на рабочие характеристики создаваемых устройств [3, 4]. В магнитных гетероструктурах спинтроники от свойств интерфейса на границе раздела магнитный/немагнитный слой зависит прохождение спин-поляризованного тока и величина эффекта гигантского магнитосопротивления [5–7]. В настоящей работе мы рассматриваем влияние интерфейсов между магнитным и немагнитными слоями на магнитооптические свойства многослойных структур, в частности, на соотношение между диагональными и недиагональными компонентами тензора диэлектрической проницаемости ε .

Экспериментальные исследования частотной зависимости компонент тензора диэлектрической проницаемости тонких пленок железа ε в слоистой структуре слой Fe/искусственный оксид SiO₂/подложка Si (100) методом спектральной магнитооптической эллипсометрии [8] выявили для тонких слоев Fe с толщинами 77.0 \pm 0.6, 33.5 \pm 0.6 и 11.5 \pm 0.6 нм зависимость компонент тензора ε не только от частоты света, но и от толщины слоя. В то же время для образца с толщиной слоя железа d(Fe) = 160.5 \pm 0.8 нм значения компонент тензора ε позволяют рассматривать его как объемный образец [9], что характерно для образца с толщиной много больше толщины скин-слоя. Более того, анализ данных для самых тонких слоев $(d(Fe) = 11.5 \pm 0.6 \text{ нм})$ показал необходимость учета интерфейсов на границе Fe/vacuum (толщина интерфейса 0.58 нм с содержанием железа 50%) и Fe/SiO₂ (толщина 0.12 нм с содержанием железа 50%), в то время как для остальных, более толстых пленок, компоненты тензора диэлектрической проницаемости нечувствительны к учету межслоевых интерфейсов. В связи с этим возникает вопрос, с чем связано влияние интерфейсов на свойства тонких пленок? Возможно, с перестройкой электронной структуры вблизи поверхности или с изменением матричных элементов дипольных межзонных переходов?

В данной статье для ответа на этот вопрос мы анализируем общие выражения для действительной и мнимой части компонент тензора диэлектрической проницаемости. Получено упрощенное представление, разделяющее вклады межзонной плотности состояний и дипольных межзонных матричных элементов, из которого следует независимость от частоты отношения мнимых частей диагональной и недиагональной компонент тензора. Экспериментальные данные для тонких слоев ($d(\text{Fe}) = 11.5 \pm 0.6$ нм) показывают, что такое отношение, действительно, постоянно практически во всем измеряемом спектральном диапазоне, но нарушается в узком интервале частот.

¹⁾e-mail: sgo@iph.krasn.ru

2. Тензор диэлектрической проницаемости ε намагниченного ферромагнетика строится на основе вынужденной анизотропии и, при параллельности вектора намагниченности оси z, выглядит следующим образом [10, 11]:

$$[\varepsilon] = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0\\ \varepsilon_{yx} & \varepsilon_{yy} & 0\\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}.$$
 (1)

При проведении расчетов компонент тензора диэлектрической проницаемости $\varepsilon(\mathbf{q}, \omega)$ в зависимости от частоты в рамках теории линейного отклика [12] и в рамках зонной теории на основе теории функционала плотности [13] используются следующие выражения для мнимой части тензора при волновом векторе $q \to 0$:

$$\operatorname{Im} \varepsilon_{\alpha\beta}(\omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{q \to 0} \frac{1}{q^2} \sum_{c,v,k} 2\delta(E_{ck} - E_{vk} - \omega) \times \langle u_{c,k+e_{\alpha}q} | u_{v,k} \rangle \langle u_{c,k+e_{\beta}q} | u_{v,k} \rangle^*, \qquad (2)$$

где индексы c и v обозначают незаполненные и заполненные зоны (для полупроводников – зону проводимости и валентную зону, соответственно), а $u_{\lambda k}$ – волновая функция орбитали $\lambda = c, v$ с волновым вектором k. Здесь Ω есть объем элементарной ячейки, e_{α} – компоненты единичного вектора. Множитель 2 появляется за счет суммирования по спину электронов.

Для вещественной части обычно используют формулу Крамерса–Кронига [13]:

$$\operatorname{Re} \varepsilon_{\alpha\beta}(\omega) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\operatorname{Im} \varepsilon_{\alpha\beta}(\omega')\omega'}{{\omega'}^{2} - \omega^{2} + i\eta} d\omega'.$$
(3)

При расчете диэлектрической проницаемости металла, вместо валентной зоны и зоны проводимости есть две зоны: d и sp. Соответственно, выражение для нахождения мнимой части диэлектрической проницаемости можно переписать в длинноволновом пределе $q \to 0$ через матричные элементы межзонных переходов $\langle u_{c,k+e_{\alpha}q} \rangle |u_{v,k} \rangle = d^{\alpha}_{cv}(k)$:

$$\operatorname{Im} \varepsilon_{\alpha\beta}(\omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{q \to 0} \frac{1}{q^2} \sum_{c,v,k} 2\delta(E_{ck} - E_{vk} - \omega) \times d_{cv}^{\alpha}(k) d_{cv}^{\beta}(k)^*.$$
(4)

Таким образом, в выражение для мнимой части диагональной компоненты тензора $\operatorname{Im} \varepsilon_{xx}$ будет входить квадрат *x*-компоненты межзонного матричного

элемента $|d_{cv}^x|^2$, зависящего от волнового вектора k, а в выражение для мнимой части недиагональной компоненты Im ε_{xy} войдет произведение x, y компонент $d_{cv}^x(d_{cv}^y)^*$.

Если матричные элементы слабо зависят от волнового вектора, то из-под суммы по k в формуле (4) можно вынести средние по зоне Бриллюэна матричные элементы $\langle d_{cv}^x \rangle$, $\langle d_{cv}^y \rangle$. Введем межзонную плотность состояний $N_{cv}(\omega)$:

$$N_{cv}(\omega) = \frac{1}{\Omega} \sum_{k} 2\delta(E_{ck} - E_{vk} - \omega).$$
 (5)

Тогда мнимая часть компонент тензора принимает вид

$$\operatorname{Im} \varepsilon_{xx}(\omega) = 4\pi^2 e^2 \sum_{c,v} N_{cv}(\omega) |\langle d_{cv}^x \rangle|^2, \qquad (6)$$

$$\operatorname{Im} \varepsilon_{xy}(\omega) = 4\pi^2 e^2 \sum_{c,v} N_{cv}(\omega) \langle d_{cv}^x \rangle \langle_{cv}^y \rangle^*.$$
(7)

Такое приближенное представление позволяет разделить вклады от изменения электронных энергий за счет интерфейсов (которые входят в межзонную плотность состояний), от изменений матричных элементов межзонных переходов. Мы заранее не знаем, как сильно зависят матричные элементы от номера зоны, в простейшем приближении двух зон (sp = 1, d = 2) сумма по зонным индексам уходит, и остается

$$\operatorname{Im} \varepsilon_{xx}(\omega) = 4\pi^2 e^2 N_{12}(\omega) |\langle d_{12}^x \rangle|^2, \qquad (8)$$

$$\operatorname{Im} \varepsilon_{xy}(\omega) = 4\pi^2 e^2 N_{12}(\omega) \langle d_{12}^x \rangle \langle d_{12}^y \rangle^*.$$
(9)

Из выражений (8), (9) видно, что ключевое отличие между мнимыми частями диагональной и недиагональной компонент тензора ε заключается в различии матричных элементов, в то время как межзонная плотность состояний входит в обе компоненты одинаково. При этом ранее в экспериментах [8] мы наблюдали, что диагональные компоненты тензора (1) для всех толщин пленок железа получаются одинаковыми как при учете интерфейсов при обработке данных измерений, так и без учета интерфейсов. В то же время недиагональная компонента (1) зависит от присутствия интерфейса для самых тонких пленок. Соответственно, ниже мы проверяем гипотезу о том, что именно вклад матричных элементов в выражениях (8), (9) определяет вклад интерфейсов при формировании значений недиагональных компонент тензора диэлектрической проницаемости.

Согласно выражениям (8), (9), отношение $\operatorname{Im} \varepsilon_{xx}(\omega) / \operatorname{Im} \varepsilon_{xy}(\omega)$ определяется как отношение

матричных элементов $\langle d_{12}^x \rangle / \langle d_{12}^y \rangle$, и ожидается, что эта величина будет не зависеть от энергии (и, соответственно, от возможных изменений энергии за счет интерфейса), что можно проверить экспериментально.

3. Ранее были опубликованы результаты экспериментального исследования методом спектральной магнитооптической эллипсометрии образцов структуры Fe/SiO₂/Si, полученных методом термического испарения в вакууме, а именно величины компонент тензора диэлектрической проницаемости слоя Fe [8,9]. Используя эти данные, в настоящей работе для самого тонкого образца с толщиной слоя железа 11.5 ± 0.6 нм мы рассчитали зависимость отношения Im $\varepsilon_{xx}(\omega)/\text{Im }\varepsilon_{xy}(\omega)$ от частоты света в области видимого спектрального диапазона (рис. 1). Значения

Рис. 1. (Цветной онлайн) Отношение мнимых частей диагональной и недиагональной компонент тензора диэлектрической проницаемости тонкопленочного образца Fe/SiO₂/Si. На вставке – увеличенный в масштабе спектральный интервал 1.875–2.075 эВ

компонент тензора ε были рассчитаны с использованием многослойной модели образца и с учетом межслоевых интерфейсов на границе Fe/vacuum (толщина 0.58 нм с содержанием железа 50%) и Fe/SiO₂ (толщина 0.12 нм с содержанием железа 50%).

Видно, что для данного образца на большей части видимого спектрального диапазона выполняется условие независимости отношения $\mathrm{Im} \varepsilon_{xx}(\omega)/\mathrm{Im} \varepsilon_{xy}(\omega)$ от энергии падающего излучения. Выброс в области 3–3.3 эВ появляется в результате перехода через нуль недиагонального элемента $\mathrm{Im} \varepsilon_{xy}(\omega)$. Особенности в этой области спектра обсуждались подробно в работе [8], где был проведен спин-поляризованный расчет плотности электронных состояний. Из этого расчета следует (рис. 3 в [8]), что особенность на нашем рис. 1 в области энергий 3–3.3 эВ ассоциирована с межзонными d-p переходами.

4. Как видно из рис. 1, и особенно на вставке к рис. 1, отношение матричных элементов $\langle d_{12}^x \rangle / \langle d_{12}^y \rangle$, действительно, можно считать постоянным почти во всем интервале измеряемого диапазона частот. В этом интервале спектральная зависимость компонент тензора определяется межзонной плотностью состояний и можно утверждать, что различие диагональных и недиагональных компонент обусловлено только различием матричных элементов межзонных переходов. В то же время имеется интервал энергий от 3 до 3.3 эВ, в котором отношение матричных элементов резко возрастает по модулю. Сравнение в данном интервале энергий абсолютных значений мнимых частей диагональной и недиагональных компонент тензора, приведенных в работе [8], показывает, что $\operatorname{Im} \varepsilon_{xx}(\omega)$ мала, но отлична от нуля, в то время как $\operatorname{Im} \varepsilon_{xy}(\omega)$ близка к нулю. Это возможно, если матричный элемент d_{12}^y близок к нулю для энергий от 3 до 3.3 эВ. Для более толстых образцов (с толщиной слоя Fe более 33 нм), где роль интерфейса заведомо незначительна, $\operatorname{Im} \varepsilon_{xy}(\omega)$ не обращается в нуль и особенность в отношении $\operatorname{Im} \varepsilon_{xx}(\omega) / \operatorname{Im} \varepsilon_{xy}(\omega)$ в данном диапазоне энергий отсутствует. Таким образом, подавление матричного элемента d_{12}^y для энергий от 3 до 3.3 эВ для пленок толщиной 11 нм есть эффект интерфейса.

Мы благодарны участникам семинара кафедры магнетизма МГУ за стимулирующие дискуссии, и особенно А.В.Ведяеву, обратившему наше внимание на роль интерфейсов. Мы также благодарим В.С. Жандуна за консультацию по расчетам тензора диэлектрической проницаемости в теории функционала плотности.

Исследование выполнено за счет гранта Российского научного фонда #21-12-00226, http://rscf.ru/project/21-12-00226/.

- К. Оура, В. Г. Лифшиц, А. А. Саранин, А. В. Зотов, М. Катаяма, Введение в физику поверхности, Наука, М. (2006).
- E. L. Ivchenko and G. Pikus, Superlattices and other heterostructures, Symmetry and optical phenomena, Springer Series in Solid-State Sciences, Springer-Verlag, Berlin, Heidelberg (1997), v. 110.
- В. А. Соловьев, А. А. Торопов, Б. Я. Мельцер, Я. З. Терентьев, Р. Н. Кютт, А. А. Ситников, А. Н. Семенов, С. В. ИвАСанов, Е. М. Голдис, П. С. Копьев, ФТП **36**, 869 (2002).

Письма в ЖЭТФ том 114 вып. 3-4 2021

- 4. А.И. Лебедев, *Физика полупроводниковых приборов*, Физматлит, М. (2008).
- 5. А. Ферт, УФН 178, 1336 (2008).
- А.Б. Грановский, М. Ильин, А. Жуков, В. Жукова, X. Гонзалес, ФТТ 53, 299 (2011).
- Физика магнитных материалов и наноструктур, под ред. В.В. Устинова, Н.В. Мушникова, В.Ю. Ирхина, ИФМ УрО РАН, Екатеринбург (2020).
- О. А. Максимова, С. А. Лященко, М. А. Высотин, И. А. Тарасов, И. А. Яковлев, Д. В. Шевцов, А. С. Федоров, С. Н. Варнаков, С. Г. Овчинников, Письма в ЖЭТФ 110(3), 155 (2019).
- O. A. Maximova, N. N. Kosyrev, S. N. Varnakov, S. A. Lyaschenko, I. A. Yakovlev, I. A. Tarasov, D. V. Shevtsov, O. M. Maximova, and S. G. Ovchinnikov, JMMM 440, 196 (2017).
- А.В. Соколов, Оптические свойства металлов, ГИФМЛ, М. (1961).
- Г. С. Кринчик, Физика магнитных явлений, изд-во Моск. ун-та, М. (1976).
- 12. Д. Н. Зубарев, *Неравновесная статистическая термодинамика*, Наука, М. (1971).
- M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).