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In quasi-one-dimensional systems with low concen-

tration of impurities the quantization of transverse elec-

tronic motion is essential and the conductivity demon-

strates van Hove singularities when the Fermi level EF

approaches a bottom of some transverse quantization

subband EN . In our previous work [1, 2] we have demon-

strated that for the case of a conducting tube of radiusR

with weak disorder potential present on its surface, the

scattering at the central part of each singularity is sup-

pressed by single impurity non-Born effects. However,

single-impurity treatment of scattering breaks down at

|ε| ∼ εmin = (n/π)
2
, where ε = 2m∗R2(EF −EN ), m∗ is

effective electron mass, n = n2(2πR)
2 is dimensionless

concentration of point-like repulsing impurities. n and

dimensionless scattering amplitude λ are assumed to be

small: n, λ≪ 1. For simplicity, in the present paper we

consider only the case of repulsing impurities λ > 0 and

develop a theoretical description of multi-impurity ef-

fects in resistivity for |ε| . εmin. We show that these

effects are effectively reduced to just two-impurity ones.

Scattering rate τ−1
mk for state with longitudinal mo-

mentum k in an m-th subband of transversal quanti-

zation is related to corresponding self-energy Σmk(ε):

τ−1
mk = −2Im {Σmk}. The current-carrying states from

(“nonresonant”) subbands with m 6= N are semiclassi-

cal, therefore the self-energies are formally additive:

Σmk =
∑

i

Σ
(i)
mk, Σ

(i)
mk ≡ Σ(i)

(
E = εm + k2/2m∗) .

Our aim is to account for all scattering processes within

the resonant subband (m = N) exactly while for nonres-

onant subband (m 6= N) processes perturbative treat-
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ment is sufficient. For perturbative scattering amplitude

we have:

Ṽ (i)
m1,m2

= V (i)
m1,m2

+ V
(i)
m1,N

Gε(zi, zi)V
(i)
N,m2

≡

≡ λ̃i
π2
eiφi(m1−m2), λ̃i = λ

{
1 +

λ

π2
Gε(zi, zi)

}
. (1)

Here Gε(zi, zi) is the exact multi-impurity Green func-

tion of a strictly one-dimensional problem. In order to

take into account multiple scattering, we solve the fol-

lowing Dyson equation:

Λ̃(i)(ren)

π2
=
λ̃(i)

π2
+
λ̃(i)

π2
gε(0)

Λ̃(i)(ren)

π2
,

gε(0) =
∑

m 6=N

g(m)
ε (0) ≈ −iπ2, g(m)

ε (0) = −πiε−1/2
m , (2)

where g
(m)
ε (0) is the free one-dimensional Green func-

tion in the m-th subband. The solution of (2) reads:

Λ̃
(ren)
i = λ(q−1

i + 1 + iλ)−1, (3)

qi = −
[
(λ/π2)Gε(zi, zi)

]−1 − 1. (4)

In order to proceed we need to evaluate Gε(zi, zi).

One-dimensional Green function satisfies the following

Schroedinger equation:

{
− 1

(2π)2
d2

dz2
+ U(z)− ε

}
G(z, zi) = −δ(z − zi), (5)

U(z) = λ/π2
∑

j

δ(z − zj). (6)

However, for |ε| ≪ εnB one can show that it is enough

to consider only 3 impurities:

U(z) → U(z) = λ/π2
∑

j=i,i±1

δ(z − zj). (7)

Taking into account more distant impurities leads to

only small corrections to Re qi and, at the same time,
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to dramatic suppression of Im qi. Therefore, for qi we

have: qi = q
(+)
i + q

(−)
i , where

q
(±)
i ≈ (k/4λ) cotk

[
L±
i + 1/4λ

]
, k = 2π

√
ε,

L
(+)
i = zi+1 − zi, L

(−)
i = zi − zi−1. (8)

Averaging over impurities positions, for resistivity ρ(ε)

we arrive at the following result:

ρ

ρ0
= − 1

λ2
Im 〈Λ(ren)〉L(±) =

=

∫ ∞

0

exp{−n(L(+) + L(−))}n2dL(+)dL(−)

([q(L(+)) + q(L(−))]−1 + 1)2 + λ2
, (9)

where ρ0 = (4π/e2EF )n(λ/π)
2 is resistivity away from

van Hove singularity. In principle, (9) together with (8)

solve our problem: what is left is only to perform a dou-

ble integration in (9) (see numerical results at Fig. 1).

Below we do it analytically in different energy domains.

Fig. 1. (Color online) Plot of the total resistivity ρ(ε) for

λ = 0.2 (main plot) and λ = 0.05 (inset). In both cases

three values of u0 = λ/n are used: u0 = 10, 15, 30

For ε > 0 quasistationary states confined between

pairs of adjacent inpurities are present in the reso-

nant subband, and for not very low ε the principal

contribution to ρ(ε) comes from resonant scattering at

these states. The corresponding resonance condition is

kL = πp, where p = 1, 2, . . . and L is either L
(+)
i or

L
(−)
i . As a result, we obtain:

ρres

ρ0
=

πn

2λ2

∞∑

p=1

e−nLp =
πn

2λ2

[
exp

(
n

2
√
ε

)
− 1

]−1

.

(10)

However, ρres(ε) vanishes at ε → 0 and the finite con-

tribution to ρ(ε = 0) has non-resonant character. The

most important nonresonant contribution ρtwin comes

from anomalously small L
(+)
i or L

(−)
i : L(±) ∼ 1/λ ≪

1/n. For ρtwin we have:

ρtwin

ρ0
≈ 2n

∫ ∞

0

e−nLdL

(4λL+ 2)2
=

n

4λ
. (11)

Why the scattering at twin impurities is dominant

at low energy? There is no special enhancement for the

twin impurities scattering at low ε, but single-impurity

scattering ampitude Λ
(ren)
i is suppressed by non-Born

effects for ε → 0 [2]. This screening effect is, however,

gradually destroyed, as a pair of impurities approach

each other.

However, at the first glance this observation is

counter-intuitive since the closer impurities are, the

more their pair resembles a solitary “composite impu-

rity”, scattering at which is expected to be suppressed.

The resolution to this paradox is as follows. Let us con-

sider transitions between states from m,m′ 6= N bands

due to scattering at a twin pair. In this case, the scat-

tering cross-section component that describes coherent

scattering at 2 impurities constituting the pair is pro-

portional to eikmm′L, where L = |zi − zj| and typical

momentum transfer kmm′ in a multi-channel system is

large: kmm′ ∼ N ≫ 1. This contribution vanishes after

averaging over L and, therefore, twin pair of impurities

could be thought of as a “coherent” object for the pro-

cesses within resonant subband but it is “incoherent”

for scattering processes between states from current-

carrying nonresonant subbands.

To conclude, we have studied the behavior of ρ(ε)

in a tube in the vicinity of a van Hove singular-

ity. We have shown that in the range of energies

−(1/4)(εminεnB)
1/2 < ε < εmin ln

−2 λ the resistivity is

dominated by scattering at rare “twin” pairs of close

defects. The predicted effect is characteristic for multi-

channel systems, it can not be observed in strictly one-

dimensional one.
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