Самые сильные магнито-индуцированные переходы атомов щелочных металлов

А. Саргсян, А. Тоноян, Д. Саркисян¹⁾

Институт физических исследований НАН Армении, 0203 Аштарак, Армения

Поступила в редакцию 18 марта 2021 г. После переработки 18 марта 2021 г. Принята к публикации 15 апреля 2021 г.

Атомные переходы щелочных металлов, которые в отсутствии внешнего магнитного поля имеют нулевую вероятность, однако, при его наличии имеют большие вероятности, названы магнитоиндуцированными (MI). Интерес к ним обусловлен большими вероятностями, которые, в широком диапазоне магнитных полей превосходят вероятности обычных переходов. МІ переходы делятся на два типа: тип-1 (MI1) и тип-2 (MI2) и их общее количество ~ 100. В работе рассмотрены MI2 переходы между нижними F_q и верхними уровнами F_e сверхтонкой структуры с выполнением условия $F_e - F_q = \Delta F = \pm 2$, которые запрецены в нулевом магнитном поле, однако, при его наличии имеют большие вероятности. Вероятности MI2 переходов с $\Delta F = +2$ максимальны при использовании оптического излучения с круговой поляризацией σ^+ ; вероятности МІ переходов с $\Delta F = -2$ максимальны при использовании излучения с поляризацие
й $\sigma^-.$ Это различие было названо магнитно-индуцированным круговым дихроизмом 1-го типа (MICD1). В работе впервые продемонстрировано, что в магнитных полях > 100 Гс при σ^+ излучении вероятность самого сильного MI2 перехода атома 85 Rb, D_2 линии в 2.5 раза больше вероятности самого сильного MI2 перехода при *σ*⁻ излучении. Это различие названо циркулярным дихроизмом 2-го типа (MICD2). Показано, как определяется самый сильный МІ переход для любого атома щелочного металла, что важно для его использования в магнито-оптических процессах. Теоретические кривые хорошо описывают экспериментальные результаты.

DOI: 10.31857/S1234567821100013

Известно, что в сильных магнитных полях может происходить значительная модификация вероятности (интенсивности) атомных переходов щелочных металлов [1, 2]. Ярким примером гигантского возрастания вероятности служит поведение магнитоиндуцированных (MI) переходов в атомах Cs, Rb, К, и др., которые образуют большой класс, состоящий из ~100 атомных переходов с интересными и важными особенностями [3-10]. По правилам отбора МІ переходы запрещены в нулевом магнитном поле, в то время как, во внешнем магнитном поле происходит гигантское возрастание их вероятностей, поэтому, они названы МІ переходы. Существенная модификация вероятностей переходов, в частности, гигантское возрастание вероятностей МІ переходов происходит из-за эффекта "перемешивания" магнитных подуровней для нижнего F_g или верхнего F_e уровней с магнитными подуровнями близлежащего перехода; эффект "перемешивания" индуцируется внешним магнитным полем [3, 4, 7–11]. Интерес к MI переходам обусловлен тем, что в определенных широких интервалах магнитных полей вероятности этих переходов могут значительно превосходить вероятности обычных атомных переходов, разрешенных и в отсутствие магнитного поля. Для количественного определения степени взаимодействия атома с магнитным полем используется характерная величина магнитного поля $B_0 = A_{\rm hfs}/\mu_B$, где $A_{\rm hfs}$ – магнитная дипольная константа основного уровня атома, μ_B – магнетон Бора [12, 13]. Для атомов ⁸⁵Rb и ⁸⁷Rb величина $B_0 = 0.7$ и 2.4 кГс соответственно.

МІ переходы делятся на два типа [14]: тип-1 (МІ1) и тип-2 (МІ2). Используя представление в виде $|F, m_F\rangle$, где F – полный момент атома, а m_F – его проекция, к первому типу МІ1 относятся переходы между нижним F_g и верхним F_e уровнями $|F_g, 0\rangle \rightarrow |F_e = F_g, 0'\rangle$, вероятность которых в нулевом магнитном поле нулевая (штрихом обозначеные верхние возбужденные уровни), однако с увеличением приложенного магнитного поля происходит гигантское увеличение вероятности этих переходов, а при дальнейшем возрастании поля $B \gg B_0$ вероятности этих переходов асимптотически приближаются к постоянному значению [4].

 $^{^{1)}\}mathrm{e\text{-}mail:}$ sarkdav@gmail.com

Ко второму типу MI2 относятся переходы между нижним F_g и верхним F_e уровнями $|F_g, m_F
angle
ightarrow$ $\rightarrow |F_e, m_F'\rangle$, где $F_e = F_g \pm 2$ и $m_F' - m_F = 0, \pm 1.$ В случае переходов MI2 с увеличением приложенного магнитного поля происходит гигантское увеличение вероятности этих переходов, однако при дальнейшем возрастании поля $B \gg B_0$ вероятности этих переходов снова стремятся к нулю. В настоящей работе рассмотрены MI2 переходы атома 85 Rb, D_2 линии. В работах [8–10] для интенсивностей МІ переходов было выявлено правило зависимости интенсивности от поляризации возбуждающего излучения: в случае атомных переходов $F_e - F_g = \Delta F = +2$ интенсивности максимальны при возбуждении излучением с круговой поляризацией σ^+ , когда выполняется условие $m'_F - m_F = +1$, в то время как в случае атомных переходов $F_e - F_g = \Delta F = -2$ интенсивности максимальны при возбуждении излучением с круговой поляризацией σ^- , когда выполняется условие $m'_F - m_F = -1$. Для некоторых MI различие в интенсивности при использовании σ^+ и σ^- излучений может достигать больших величин [9]. Различие отклика атомной системы для таких процессов, как поглощение, флуоресценция, резонансная ионизация атомов и др. в магнитном поле при использовании σ^+ и σ^- излучений в атомной спектроскопии называется магнито-индуцированным циркулярным дихроизмом (MICD) [8,9,15]; вышеотмеченный дихроизм назван 1-го типа (MICD1).

В настоящей работе исследован циркулярный дихроизм, названный нами 2-го типа (MICD2), суть которого в следующем. Сравнение в широком интервале магнитных полей вероятности самого сильного MI2 перехода при услови
и $F_e-F_g=\Delta F=+2$ с использованием σ^+ излучения (для 85 Rb это переход $|2, -2\rangle \rightarrow |4', -1'\rangle)$, с интенсивностью самого сильного MI перехода с использованием σ^- излучения (для $^{85}\mathrm{Rb}$ это переход |3,0
angle
ightarrow |1',-1'
angle) показало, что вероятность перехода для которого выполняется условие $F_e - F_g = \Delta F = +2$ всегда больше. Ранее, в работе [9] было показано, что вероятность MI2 перехода 2 \rightarrow 4' для σ^- излучения (переход под номером 1⁻ в квадрате) в 4 раза меньше вероятности перехода с номером 5 в красном кружке. Другими словами, вероятность наиболее сильного MI2 перехода при использовании σ^+ излучения всегда больше, чем вероятность MI2 перехода при использовании σ^{-} излучения. В работе [10], показано, что в широком интервале магнитных полей вероятность самого сильного МІ-перехода $|3, -3\rangle \rightarrow |5', -2'\rangle$ атома Cs, D_2 линии при использовании σ^+ излучения в 2 раза больше, чем вероятность самого сильного MI перехода $|4,-1\rangle \rightarrow |2',-2'\rangle$ при использовании σ^- излучения.

Теоретические расчеты показывают, что это утверждение верно для MI2 переходов атомов всех щелочных металлов: для D_2 линий атомов ⁸⁷Rb, ³⁹K и Na вероятность самого сильного MI2 перехода $|1, -1\rangle \rightarrow |3', 0'\rangle$ при использовании σ^+ излучения в 4 раза больше самого сильного MI2 перехода $|2, +1\rangle \rightarrow |0', 0'\rangle$, который формируется σ^- излучением. Таким образом, самый сильный MI2 переход формируется σ^+ излучением для перехода с $\Delta F = +2$ и имеет наименьшее значение магнитного подуровня m_F для нижнего уровня F_a .

На рисунке 1а приведена диаграмма уровней ⁸⁵Rb, D_2 линии и переходы при σ^+ излучении, MI2 переходы 2 \rightarrow 4' отмечены 1–5 в красных кружках, также приведены переходы 2 \rightarrow 3', с номерами 1–5; на рис. 1b приведены переходы 3 \rightarrow 1', 2', 3', 4', в

Рис. 1. (Цветной онлайн) ⁸⁵Rb, D_2 линия, переходы при σ^+ излучении, для m_F правила отбора: $m'_F - m_F = +1$. (а) – Показаны переходы $2 \rightarrow 3', 4'$ (штрихами отмечены верхние уровни), в кружках отмечены MI2 переходы $2 \rightarrow 4'$, самую большую вероятность имеет переход под номером 5 в кружке. (b) – Показаны переходы $3 \rightarrow 1', 2', 3', 4'$. В темных кружках отмечены MI2 переходы $3 \rightarrow 1', 2', 3', 4'$. В темных кружках отмечены MI2 переход $3 \rightarrow 4'$, отмеченный как ⁸⁵GT, называется "направляющим" атомным переходом (GT)

630

Другие важные особенности GT переходов приведены в [11]. На рисунке 2a приведена диаграмма

Рис. 2. (Цветной онлайн) ⁸⁵Rb, D_2 линия, переходы при σ^- излучении, для m_F правила отбора $m'_F - m_F = -1$. (а) – Переходы 2 \rightarrow 1', 2', 3', 4', в прямоугольнике под номером 1⁻ показан MI2 переход 2 \rightarrow 4'; (b) – переходы 3 \rightarrow 1', 2', 3', 4', в красных кружках отмечены MI2 переходы 1⁻, 2⁻, 3⁻ (в кружке под номером 1⁻ показан переход MI2, имеющий среди них наибольшую вероятность); переход 3 \rightarrow 4', отмеченный как ⁸⁵GT, является "направляющим" (GT)

уровней и переходы при σ^- излучении. Показаны переходы 2 \rightarrow 1', 2', 3', 4', под номером 1⁻ в квадрате показан единственный MI2 переход 2 \rightarrow 4'. На рисунке 2b показаны переходы 3 \rightarrow 1', 2', 3', 4', MI2 переходы отмечены 1⁻, 2⁻, 3⁻ в красных кружках (под номером 1⁻ в красном кружке показан MI2 переход, имеющий наибольшую вероятность среди них); переход 3 \rightarrow 4', отмеченный как ⁸⁵GT, является "направляющим" (GT). Ниже приведено сравнение самого сильного MI2 перехода при использовании σ^+ излучения под номером 5 в красном круж-

Письма в ЖЭТФ том 113 вып. 9-10 2021

ке, с самым сильным переходом при использовании σ^- поляризованного излучения под номером 1^- в красном кружке, и показано, что переход под номером 5 в красном кружке является самым сильным MI2 переходом D_2 линии. На рисунке 3 при-

Рис. 3. (Цветной онлайн) Схема эксперимента: ECDL – непрерывный диодный лазер, $\lambda = 780$ нм; FI – фарадеевский изолятор; 1 – четвертьволновая пластина; 2 – НЯ с Rb внутри печки; 3 – постоянные магниты PM; 4 – фотоприемник; 5 – узел для формирования реперного спектра; ОЅ – цифровой осциллограф, вставка в левом верхнем углу – фотография НЯ, заполненная Rb; видны интерференционные полосы, образующиеся при отражении света от внутренних поверхностей окон. Область толщиной $L = \lambda/2 = 390$ нм отмечена овалом

ведена схема экспериментальной установки. Использовалось излучение перестраиваемого диодного лазера с внешним резонатором [16], с длиной волны 780 нм и спектральной шириной ~1 МГц. Для регистрации спектра поглощения использовалось наноячейка (HЯ), с парами атомов Rb с толщиной в направлении лазерного излучения, равной половине длины волны ($L = \lambda/2 = 390$ нм) излучения резонансного с частотой D_2 линии. НЯ использовалась для реализации $\lambda/2$ -метода, который обеспечивает сужение атомных переходов (линий) в спектре поглощения $A(\nu)$ НЯ. Для дальнейшего сужения атомных линий, производилось двойное дифференцирование спектра поглощения $A''(\nu)$, что обеспечивало дополнительное значительное сужение атомных линий в спектре второй производной (SD - second derivative) [17]. Это особенно важно для частотого разделения близкорасположенных атомных переходов при наличии их большого числа. НЯ помещалась в печку, в которой имелись отверстия для прохождения лазерного излучения, и нагревалась до 110°C, что обеспечивало плотность (концентрацию) атомов $N \sim 10^{13} \, {\rm cm}^{-3}$ (детали конструкции НЯ приведены в работе [18]). НЯ помещалась между сильными постоянными магнитами (PM), которые формировали сильные продольные магнитные поля, волновой вектор лазерного излучения k направлялся вдоль магнитного поля B [19]. Для формирования частотного репера часть лазерного излучения направлялась на узел, содержаший дополнительную HЯ (5) с толщиной $L = \lambda/2 = 390$ нм, спектр SD поглощения которой служил частотным репером [17]. Оптические излучения регистрировались фотодиодами ФД-24K (4), сигналы с которых подавались на осциллограф Tektronix TDS2014B (OS).

Верхние кривые (Abs.) на рис. 4а-с показывают экспериментальные спектры поглощения переходов $2, 3 \rightarrow 3', 4'$ в продольном магнитном поле B == 800, 900 и 1000 Гс соответственно, полученные $\lambda/2$ методом ($L = \lambda/2 = 390$ нм) при использовании σ^+ поляризованного излучения (переходы смешены в высокочастотную область относительно частот исходных переходов при B = 0). Мощность лазера 50 мкВт. Как видно, в спектре поглощения некоторые переходы частотно перекрываются. Красные кривые показывают спектры SD второй производной кривых поглощения (здесь и далее спектр SD для удобства инвертирован). MI2 переход $|2, -2\rangle \rightarrow |4', -1'\rangle$ с номером 5 в красном кружке – самый сильный в группе MI2 переходов атома 85 Rb при использовании σ^+ излучения. На спектре также приведен "направляющий" переход $GT (^{85}Rb)^+$, применение которого приведено ниже. Синие линии – SD спектры расчетных спектров поглощения атомных переходов с ПШПВ 40 МГц. Была использована теоретическая модель, изложенная в работах [3, 4, 7, 8], описывающая изменение вероятностей и частотных положений атомных переходов в магнитном поле, с использованием матрицы гамильтониана с учетом всех переходов внутри сверхтонкой структуры. Нижние кривые (Reper) на рис. 4а-с – спектры SD поглощения переходов ⁸⁵Rb, $2 \rightarrow 1', 2', 3'$ и ⁸⁷Rb, $1 \rightarrow 0', 1', 2'$ при B = 0.

Поскольку целью являлось сравнение вероятностей в магнитных полях самого сильного MI2 перехода Rb при $\Delta F = +2$ при σ^+ -излучении (переход под номером 5 в красном кружке) с вероятностью наиболее сильного MI2 перехода Rb с $\Delta F = -2$ при σ^- излучении (переход под номером 1⁻ в красном кружке), ниже приведены спектры при возбуждении излучением с поляризацией σ^- . Верхние кривые (Abs.) на рис. 5а-с показывают экспериментальные спектры поглощения переходов 85 Rb, $3 \rightarrow 1', 2', 3', 4'$ в магнитном поле B = 800,900 и 1000 Гс соответственно, полученные $\lambda/2$ -методом ($L = \lambda/2 = 390$ нм) при использовании σ^- поляризованного излучения. Спектры находятся на низкочастотном крыле и содержат также переходы 87 Rb, D_2 линии, которые на спектре отмечены стрелками (нумерация приведена только для

Рис. 4. (Цветной онлайн) Атом ⁸⁵Rb, возбуждение σ^+ поляризацией, толщина НЯ L = 390 нм. (a)–(c) – Верхние кривые (Abs.) – экспериментальные спектры поглощения переходов 2, $3 \rightarrow 3', 4', B = 800, 900$ и 1000 Гс соответственно. Красные кривые – SD спектры, МІ2 переход с номером 5 в кружке самый сильный в группе МІ2 переходов; GT (⁸⁵Rb)⁺ – "направляющий" переход; синие линии – SD спектры расчетных спектров поглощения, ПШПВ 40 МГц. Нижние кривые на (a)–(c) (Reper) – спектры SD поглощения переходов ⁸⁵Rb, $2 \rightarrow 0, 1', 2', 3'$ и ⁸⁷Rb, $1 \rightarrow 0, 1', 2'$ при B = 0

Рис. 5. (Цветной онлайн) Атом ⁸⁵Rb, возбуждениие σ^- поляризацией, толщина НЯ L = 390 нм. (a)–(c) – Верхние кривые (Abs.) – экспериментальные спектры поглощения переходов 3 \rightarrow 1', 2', 3', 4', B = 800, 900 и 1000 Гс соответственно, красные кривые – спектры SD, МІ2 переход с номером 1⁻ в кружке – самый сильный в своей группе; GT (⁸⁵Rb)⁻ и GT (⁸⁷Rb)⁻ – "направляющие" переходы; синие линии – SD спектры расчетных спектров поглощения, ПШПВ 40 МГц. Нижние кривые на (a)–(c) – (Reper)-спектры SD поглощения при B = 0

тех переходов, которые важны в настоящей работе). Заметим, что MI2 переход $2 \rightarrow 4'$ при использовании σ^- излучения (переход, отмеченный на рис. 2а под номером 1^{-} в квадрате) отсутствует в спектре, так как по частоте он сильно смещен на $-8 \Gamma \Gamma$ ц в низкочастотную область и имеет в 4 раза меньшую амплитуду, чем у MI2 с номером 5 в красном кружке. Как видно, в спектре поглощения некоторые переходы спектрально плохо разрешены, в то время как в спектрах SD второй производной они спектрально полностью разрешены. Красные кривые показывают спектры SD второй производной поглощения этих атомных переходов. MI2 переход с номером 1^- в красном кружке $(|3,0\rangle \rightarrow |1',-1'\rangle)$ – самый сильный в группе MI2 из переходов атома ⁸⁵Rb при использовании σ^- излучения. На спектре также приведены "направляющие" переходы GT (⁸⁵Rb)⁻ и GT (⁸⁷Rb)⁻. Синие линии показывают SD спектры расчетных спектров поглощения при спектральной ширине переходов 40 МГц. Нижние кривые (Reper) на рис. 5а-с показывают спектры SD поглощения переходов ⁸⁷Rb, $2 \rightarrow 1', 2', 3'$ при B = 0. Известно, что параметры непрерывных диодных лазеров, такие, как мощность, спектральная ширина линии, линейность частотного сканирования, могут различаться в зависимости от частотного диапазона, в котором работает лазер. Поскольку MI2 переход под номером 5 в красном кружке находится на высокочастотном крыле, а MI2 переход под номером 1^- в красном кружке находится на низкочастотном крыле (при $B \sim 1000 \, \Gamma c$ частотное расстояние между ними $\sim 9 \Gamma \Gamma \mu$), то прямое сравнение амплитуд этих переходов по спектру может быть неточным. Поэтому нами проводилось следующее. Вероятности "направляющих" переходов $GT (^{85}Rb)^+$ и $GT (^{85}Rb)^-$ равны друг другу при всех величинах магнитного поля [11]. Абсолютная величина поглощения при использовании $\lambda/2$ -метода мала и составляет ~1%, поэтому величина поглощения может быть записана как $A = \sigma NL$, где σ – сечение резонансного поглощения, которое пропорционально вероятности атомного перехода (в нашем случае зависит от величины B), N – плотность атомов, L – толщина НЯ. Следовательно, амплитуды переходов в спектрах поглощения пропорциональны вероятностям этих переходов (предполагается, что интенсивность возбуждающего излучения мала и не вызывает эффектов насыщения переходов [20]). Поскольку MI2 переход с номером 5 в красном кружке расположен по частоте близко к GT $(^{85}Rb)^+$, a MI2 переход с номером 1⁻ в красном кружке расположен близко к $GT (^{85}Rb)^{-}$, поэтому, измеряя соотношение амплитуд этих MI2 переходов к соответствующим ам-

Рис. 6. (Цветной онлайн) Расчетная кривая отношения вероятностей переходов $|2, -2\rangle \rightarrow |4', -1'\rangle$ и $|3, 0\rangle \rightarrow$ $\rightarrow |1', -1'\rangle$ при возбуждении излучениями с σ^+ и σ^- поляризацией соответственно, черные квадратики – экспериментальные результаты. На вставке – это отношение в широкой области магнитных полей; вероятность перехода $|2, -2\rangle \rightarrow |4', -1'\rangle$ превосходит вероятность перехода $|3, 0\rangle \rightarrow |1', -1'\rangle$ более, чем в 2 раза; это названо циркулярным дихроизмом 2-го типа (MICD2)

плитудам GT ($^{85}{\rm Rb})^+$ и GT ($^{85}{\rm Rb})^-,$ можно определить отношение $A_{MI(5)}/A_{MI(1^{-})}$. На рисунке 6 черными квадратиками показаны экспериментальные результаты для B = 800, 900 и $1000 \,\Gamma c$, сплошная линия – теоретическая кривая. Причина выбора всего трех значений В заключается в следующем: при разных значениях В происходит частотное перекрытие MI2 и GT переходов (при возбуждении излучениями σ^+ или σ^- поляризациями) с другими переходами. При выбранных трех значениях частотного перекрытия с другими переходами не происходит, что важно для правильного определения амплитуд MI2 с номерами 5 и 1⁻ в красных кружках. Из рисунка 6 видно, что вероятность самого сильного перехода $|2,-2\rangle \rightarrow |4',-1'\rangle$ при использовании σ^+ излучения в интервале 0.2-2 кГс значительно превосходит вероятность самого сильного перехода $|3,0\rangle \rightarrow$ $|1',-1'\rangle$ при использовании σ^- излучения, что необходимо учитывать при их использовании в магнитооптических процессах. Пары атомов металлов являются изотропной средой, однако, когда прикладывается продольное магнитное поле В, среда становится анизотропной. Различная реакция в магнитном поле атомной системы при использовании σ^+ и σ^- излучений называется магнито-индуцированным циркулярным дихроизмом [8, 15]; для данного случая можем назвать циркулярным дихроизмом 2-го типа (MICD2).

Отметим, что в настоящей работе исследованы МІ переходы только $nS \to nP$ первой фундаментальный серии *D*-линий щелочных металлов, где n = 3, 4, 5, 6 для Na, K, Rb, Cs, соответственно, где n является главным квантовым числом, что составляет в общей сложности (MI1 и MI2 вместе) ~100 переходов, включая \sim 70 MI2 переходов. Расчеты показывают, что по 70 MI2 переходов будут также наблюдаться и для второй фундаментальной серии D_2 -линий, $nS \to (n+1)P$, а также для третьей фундаментальной серии *D*-линий $nS \rightarrow (n+2)P$ и т.д. Важно отметить, что для каждой последующей серии D_2 -линий величина В, при которой достигается максимальная вероятность MI2 переходов, уменьшается, что упростит их исследования и применения. Также, как это показано в настоящей работе, самый сильный MI2 переход формируется σ^+ излучением для переходов с $\Delta F = +2$ и имеет наименьшее значение магнитного подуровня m_F для нижнего уровня F_q . Недавно изготовленные стеклянные НЯ, заполненные щелочным металлом [21, 22], наряду с приведенной в настоящей работе НЯ (изготовленной из технического сапфира), могут быть успешно применены для этих исследований.

А. Саргсян благодарит ГК МОН РА за финансовую поддержку, проект #19YR-1C017.

- Е.Б. Александров, Г.И. Хвостенко, М.П. Чайка, Интерференция атомных состояний, Наука, М. (1991).
- M. Auzinsh, D. Budker, and S. M. Rochester, *Optically Polarized Atoms: Understanding Light-Atom Interactions*, Oxford University Press, N.Y. (2010).
- P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).
- G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, Europhys. J. D 66, 119 (2012).
- A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).
- S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A 92, 063810 (2015).
- A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).
- А. Саргсян, А. Тоноян, Г. Ахумян, Д. Саркисян, Письма в ЖЭТФ 106, 669 (2017).
- A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, and D. Sarkisyan, EuroPhys. Lett. **121**, 53001 (2018).
- A. Sargsyan, A. Amiryan, A. Tonoyan, and D. Sarkisyan, Phys. Lett. A **390**, 127114 (2021).

Письма в ЖЭТФ том 113 вып. 9-10 2021

- А. Саргсян, Г. Ахумян, А. Папоян, Д. Саркисян, Письма в ЖЭТФ 101, 330 (2015).
- B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).
- M. Zentile, J. Keaveney, L. Weller, D.J. Whiting, C.S. Adams, and I.G. Hughes, Comput. Phys. Commun. 189, 162 (2015).
- 14. А. Саргсян, А. Тоноян, Т. А. Вартанян, Д. Саркисян, Оптика и спектроскопия **128**, 1806 (2020).
- M. Ilchen, N. Douguet, T. Mazza et al. (Collaboration), Phys. Rev. Lett. 118, 013002 (2017).
- V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006).
- A. Sargsyan, A. Amiryan, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 5533 (2019).

- J. Keaveney, A. Sargsyan, U. Krohn, D. Sarkisyan, I.G. Hughes, and C.S. Adams, Phys. Rev. Lett. 108, 173601 (2012).
- A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).
- 20. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, Berlin-Heidelberg (2004).
- T. Peyrot, C. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).
- T. F. Cutler, W. J. Hamlyn, J. Renger, K. A. Whittaker,
 D. Pizzey, I. G. Hughes, V. Sandoghdar, and
 C. S. Adams, Phys. Rev. Appl. 14, 034054 (2020).