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Phase-field (PF) approach [1, 2] has been widely
used to captures various phase transitions (PTs) [3–10].
Recently, It has been realized that the finite width of
the interface is an important aspect to discover new
phenomena [11–14] and can be used to control PTs
for different material system [15–19]. However, for most
of the cases, such scale parameters have been ignored,
and corresponding various scale effects and phenom-
ena could not be studied systematically. In the present
study, solid-solid PTs via interfacial molten phase have
been considered where solid δ-Octogen (O1) phase par-
tially or completely melts and re-solidifies into solid β-
Octogen (O2) phase in a propagating solid-melt-solid
interface [20–24] Since the transitional molten interface
is metastable and temporary, that is why it is called as
a virtual melt [17, 25–29]. During virtual melting, two
different important dimensionless nanoscale parameters
can be defined, e.g., ratios of width and energy of two
different interfaces, ξδ = δ21/δs0 and ξΨ = Ψ21/Ψs0

which significantly affect the formation of interfacial
melt in Octogen [30–32]. These nanoscale parameters
ξΨ and ξδ can be explicitly defined and easily controlled
in our multiphase phase-field (MPF) theory [30–33]. In
our current work, we have extended our previous para-
metric study [31, 32] for different range of nanoscale pa-
rameters (ξΨ, ξδ) and a MPF parameter Υ12 character-
izing the interaction of two solid-melt interfaces on the
formation of propagating interfacial melt which reveals
multiple solutions of barrierless nucleated melt nanos-
tructure and nontrivial nanoscale effects.

Different scale effects and non-trivial phase transfor-
mation mechanism has been observed when the solution
of Ω has been studied for nanoscale parameters ξΨ and
ξδ for broad range of non-equilibrium temperature as
shown in Fig. 1. For different critical values of the pa-
rameters (i.e., ξΨ and ξδ) and depending on the energy
barrier of the solid-melt interface Υ12, the appearance
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of propagating interfacial melt can be either continuous-
reversible without the hysteresis or jump-like first-order
discontinuous transformation with hysteresis.

Our MPF model and simulation results presents a
new point of view on solid-solid phase transformation
describing the transitive interfacial molten phase for Oc-
togen crystal. The resulted interesting non-trivial evi-
dence of the existence of molten layer in the solid-solid
transition way below the melting temperature indicates
the general applicability of our MPF model for the case
of first-order-like solid-solid transformations and depo-
sition. Additionally, this approach can be utlilized to
capture PTs in metallic and amorphous systems [34–36]
as well as grain-boundary melting [37–39]. Our devel-
oped approach is applicable to various PTs [40] such
as surface-induced melting [41], martensitic PTs [42–44]
and precipitate evolution [45] etc.
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Fig. 1. (Color online) Stationary value of Ω is plotted as a function of θ/θ21e in the range 0.5 6 θ/θ21e 6 2.4 for (a) – ξδ = 0.5,

Υ12 = 1 and (b) – ξδ = 1.4, Υ12 = 10 for (i) ξΨ = 2.2 (O1O0O2), (ii) ξΨ = 2.2 (O1O2), (iii) ξΨ = 3.7 (O1O0O2), and (iv)

ξΨ = 3.7 (O1O2). Continuous and reversible solution occurs for ξδ = 0.5, Υ12 = 1; while the solution for ξδ = 1.4, Υ12 = 10

represents jump-like first-order transformation with hysteresis loops. All the values of Υ12 are in kg/(nm.s2)
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