Образование ⁸Не в реакциях поглощения остановившихся пионов ${}^{9}\mathrm{Be}(\pi^{-},p)X$ и ${}^{10}\mathrm{B}(\pi^{-},pp)X$

Ю.Б. Гуров^{+*}, С.В. Лапушкин⁺, Т.И. Леонова⁺, В. Г. Сандуковский^{*}, М.В. Телькушев⁺, Б.А. Чернышев⁺¹⁾

+ Национальный исследовательский ядерный университет "МИФИ", 115409 Москва, Россия

*Объединенный институт ядерных исследований, 141980 Дубна, Россия

Поступила в редакцию 7 декабря 2020 г. После переработки 30 декабря 2020 г. Принята к публикации 30 декабря 2020 г.

Структура уровней тяжелого изотопа гелия ⁸Не исследовалась в реакциях поглощения остановившихся пионов: ⁹Ве $(\pi^-, p)X$ и ¹⁰В $(\pi^-, pp)X$. Измерения были выполнены с помощью двухплечевого многослойного полупроводникового спектрометра на ускорителе LANL. Получены указания на существование мягкой дипольной моды при энергии возбуждения $E_x \approx 3$ МэВ. Впервые наблюдалось состояние с высокой энергией возбуждения (12.2(5) МэВ).

DOI: 10.31857/S1234567821030010

1. Введение. Среди нуклонно-стабильных ядер тяжелый изотоп гелия ⁸Не обладает рекордным отношением числа нейтронов к протонам: N/Z = 3. Энергия отделения двух нейтронов составляет величину $S_{2n}(^{8}\text{He}) = 2.14 \text{ МэВ}$, что превышает соответствующую величину для ⁶Не – 0.973 МэВ [1]. Поэтому можно предположить, что основное состояние ⁸Не представляет собой α -частичный кор, окруженный четырьмя валентными нейтронами, а не трехчастичную систему ⁶He+n+n. При этом, как было показано экспериментально [2, 3] и теоретически [4, 5], волновая функция наряду с $(p_{3/2})^4$ компонентой содержит заметную примесь других компонент – $(p_{3/2})^2(s_{1/2})^2$, $(p_{3/2})^2(d_{5/2})^2$ и $(p_{3/2})^2(p_{1/2})^2$.

Возбужденные уровни ⁸Не наблюдались в ограниченном числе экспериментальных работ (см. компиляцию мировых данных [1] и обзоры [6-8]), при этом статистическая обеспеченность результатов невысока. По-видимому, это является одной из причин в неопределенности энергии первого возбужденного состояния, значения которой лежат в интервале $E_{x1} = 2.7 \div 3.6 \text{ M}$ эВ [1]. Другое объяснение такого разброса может быть связано с тем, что в экспериментах наблюдается суперпозиция двух состояний – 2⁺ резонанса и мягкой дипольной моды (МДМ) с $J^{P} = 1^{-}$ [9]. Следовательно, отличия в результатах могут быть обусловлены различной заселенностью этих состояний. В [9] первое возбужденное состояние связывают с МДМ при $E_x \approx 3\,\mathrm{M}$ эВ, а второе возбужденВ нескольких работах [1, 5, 10, 11] наблюдались более высокие возбуждения ⁸Не. Параметры этих состояний представлены в табл. 1. Отметим, что в реакциях на ионных пучках наблюдаемый спектр возбуждений ограничен энергией $E_x = 7.5$ МэВ [9].

Ранее исследование структуры уровней ⁸Не было выполнено нами в реакциях поглощения остановившихся пионов: ¹¹В(π^- , pd)X [12], ¹²С(π^- , p^3 He)X, ¹⁴С(π^- , t^3 He)X и ¹⁴С(π^- , d^4 He)X [13].

Полученные результаты представлены в табл. 1. Отметим, что в работе [12] впервые наблюдались высоковозбужденные состояния с $E_x = 9.3(4)$ и 12.2(3) МэВ. Также в трех реакциях впервые наблюдалось состояние с $E_x \approx 6.4$ МэВ и Г ~ 0.6 МэВ [12,13]. Следует отметить, что в реакции захвата двух протонов 10 Be(12 C, 14 O)⁸Не наблюдался близкий по энергии возбуждения уровень с $E_x \approx 6.03(10)$ МэВ, но заметно менее широкий Г = 0.15(15) МэВ [14].

В настоящей работе с целью получения новой информации и подтверждения ранее полученных результатов по спектроскопии ⁸Не исследовались реакции ⁹Ве $(\pi^-, p)X$ и ¹⁰В $(\pi^-, pp)X$. Заметим, что предварительная информация о реакции ⁹Ве $(\pi^-, p)X$ была представлена нами в работе [15] на ограниченном наборе статистики.

ное состояние $J^P = 2^+$ лежит в области энергий возбуждения 3.6 ÷ 3.9 МэВ. Однако в остальных работах [1, 3, 10, 11] утверждается, что для первого возбужденного состояния $J^P = 2^+$, а вопрос о спин-четности второго возбужденного состояния остается открытым [11].

 $^{^{1)}}$ e-mail: chernyshev@mephi.ru

E_x , M \ni B	Г, МэВ	J^P	Реакция, работа
$2.6 \div 3.6$	~ 0.6	2^{+}	[1]
≈ 3		(1^{-})	[9]
			$^{10}\mathrm{B}(\pi^-,pp)^8\mathrm{He}$
≈ 3	~ 0.6	$(1^{-}), (2^{+})$	[11]
$3.6 \div 3.9$	≈ 0.5	2^{+}	[9, 27]
3.9 ± 0.2	≈ 0.5		${}^{9}\mathrm{Be}(\pi^{-},p)^{8}\mathrm{He},$
			$^{11}\mathrm{B}(\pi^-, pd)^8\mathrm{He}$ [12],
			${}^{12}C(\pi^-, p^3He)^8He, {}^{14}C(\pi^-, t^3He)^8He, {}^{14}C(\pi^-, d^4He)^8He$ [13]
≈ 4.2	1.2	(1^{-})	[1, 11]
4.6 ± 0.3	≈ 0.5		${}^{9}\text{Be}(\pi^{-},p)^{8}\text{He}, {}^{10}\text{B}(\pi^{-},pp)^{8}\text{He},$
			${}^{11}{ m B}(\pi^-,pd)^8{ m He}~[12]$
5.4(5)	0.5(3)	1+	[3, 9]
(6.03(10))	0.15(15)		[14]
≈ 6.4	~ 0.6		${}^{10}B(\pi^-, pp)^8He,$
			$^{11}\mathrm{B}(\pi^-,pd)^8\mathrm{He}$ [12],
			${}^{14}C(\pi^-, t^3He)^8He, {}^{14}C(\pi^-, d^4He)^8He$ [13]
7.16(4)	0.1(1)	(1^{-})	[14]
9.3(4)	1.7(3)		${}^{11}\mathrm{B}(\pi^-,pd)^8\mathrm{He}\ [12]$
12.2(3)	0.8(3)		${}^{10}{ m B}(\pi^-,pp)^8{ m He}$

Таблица 1. Экспериментальные результаты по возбужденным уровням 8 Не

Важно отметить, что реакция поглощения остановившихся пионов была ранее успешно использована нами для исследования структуры уровней других тяжелых изотопов гелия: ⁶He [16,17] и ⁷He [18–20].

2. Эксперимент. Эксперимент был выполнен на канале пионов низких энергий ускорителя LANL с помощью двухплечевого многослойного полупроводникового спектрометра [21,22]. Пучок отрицательных пионов с энергией 30 МэВ проходил через бериллиевый замедлитель и останавливался в тонкой мишени (~24 мг · см⁻²). Скорость остановок пионов в мишенях составляла ~ 6·10⁴ c⁻¹. Мишень ⁹Ве являлась изотопно-чистой, в мишени ¹⁰В вклад примеси ¹¹В составлял 15%, вклад неконтролируемых примесей в обеих мишенях ≤ 1 %. Измерения на мишенях ⁹Ве, ¹⁰В, ¹¹В проводились в рамках одного экспериментального сеанса, что позволило минимизировать погрешности вычитания вклада примеси ¹¹В из результатов измерения на мишени ¹⁰В.

Заряженные частицы, образующиеся при поглощении пионов ядрами мишени, регистрировались двумя многослойными полупроводниковыми телескопами, расположенными под углом 180° относительно друг друга. Энергетическое разрешение при регистрации протонов составило величину ΔE (FWHM) ≈ 0.45 MэB [21]. Разрешение по недостающей массе (MM) при регистрации pp-пар составило величину ΔMM (FWHM) ≈ 1 МэВ

[22]. Точность абсолютной привязки шкалы в инклюзивных и корреляционных измерениях была лучше 200 кэВ [22]. Более подробно спектрометр и экспериментальная методика описаны в работах [21, 22].

3. Результаты и обсуждение. Поиск состояний ⁸Не проводился по пикам в спектрах недостающих масс, измеренных в реакциях ${}^{9}\text{Be}(\pi^{-}, p)X$ и ${}^{10}\text{B}(\pi^{-}, pp)X$.

Спектр ММ, полученный в инклюзивных измерениях реакции ${}^{9}\text{Be}(\pi^{-}, p)X$, представлен на рис. 1. За начало отсчета принята масса основного состояния ⁸Не. Экспериментальный спектр был описан суммой брейт-вигнеровских распределений и *п*-частичных распределений по фазовому объему (n > 2) с учетом энергетического разрешения установки. Описание основного состояния представляет собой фактически приборную линию установки. При описании спектра удалось надежно выделить основное и два возбужденных состояния ⁸Не со следующими параметрами (E_x, Γ) : (3.9(2) МэВ, ≈ 0.5 МэВ) и $(4.6(3) \text{ M} \Rightarrow \text{B}, \approx 0.5 \text{ M} \Rightarrow \text{B})$. Сравнение с предварительными результатами ($E_x = 4.4(2)$ МэВ), полученными нами ранее, показывает, что наблюдаемый в работе [15] пик представляет собой суперпозицию двух состояний, которые не удалось разделить вследствие ограниченной статистики.

Также в экспериментальном спектре наблюдаются превышения над описанием в трех областях при

Рис. 1. (Цветной онлайн) Спектр MM для реакции ${}^{9}\text{Be}(\pi^{-}, p)X$. Точки с погрешностями – экспериментальные данные. Сплошные линии – описание основного и возбужденных состояний, 1 – полное описание; распределения по фазовым объемам: $2 - \pi^{-} + {}^{9}\text{Be} \rightarrow p + {}^{6}\text{He} + 2n; 3 - \pi^{-} + {}^{9}\text{Be} \rightarrow p + {}^{7}\text{He} + n; 4 - \pi^{-} + {}^{9}\text{Be} \rightarrow p + {}^{6}\text{He}^{*}(1.797) + 2n$. Стрелками отмечены области спектра, в которых экспериментальные данные превышают описание

энергиях $E_x \approx 3$, 6.5 и 12 МэВ, что указывает на возможное существование в этих областях возбужденных состояний. Отметим, что энергия отделения двух нейтронов $S_{2n}(^{8}\text{He}) = 2.14 \text{ МэВ}$, поэтому избыток событий вблизи порога реакции трудно объяснить, не привлекая гипотезу о существовании низколежащего состояния.

Спектр MM, полученный в корреляционных измерениях реакции ${}^{10}B(\pi^-, pp)X$, полученный после вычета вклада примеси ${}^{11}B$, представлен на рис. 1. За начало отсчета принята масса основного состояния ⁸Не. Экспериментальный спектр был описан суммой брейт-вигнеровских распределений и *n*-частичных распределений по фазовому объему (n > 3) с учетом энергетического разрешения установки.

Как видно на рис. 2, реакция поглощения остановившихся пионов легкими ядрами с образованием двух быстрых протонов ${}^{10}B(\pi^-, pp)X$ обладает ярко выраженной селективностью – в конечном состоянии не наблюдается основное состояние остаточного ядра. Аналогично, образование основного состояния нейтронно-избыточных ядер подавлено в реакциях ${}^{9}Be(\pi^-, pp){}^{7}H$ [23], ${}^{11}B(\pi^-, pp){}^{9}He$, ${}^{12}C(\pi^-, pp){}^{10}Li$ [24] и ${}^{14}C(\pi^-, pp){}^{12}Li$ [25].

Рис. 2. (Цветной онлайн) Спектр MM для реакции 10 В(π^-, pp)X. Точки с погрешностями – экспериментальные данные. Сплошные линии – описание возбужденных состояний, 1 – полное описание; 2 – распределения по фазовому объему: $2 - \pi^- + {}^{10}$ В $\rightarrow p + p + {}^{6}$ Не*(1.8) + 2n. На вставке – разность между экспериментальным спектром и его описанием в области 0 < MM < 16 МэВ. Стрелками отмечены средние значения полученной разности

По-видимому, основным механизмом образования двух протонов является поглощение пиона на *pp*паре, с последующей перезарядкой нейтрона на остаточном ядре: ${}^{8}\text{Li}(n,p){}^{8}\text{He.}$ К сожалению, мы не нашли экспериментальной информации об этой реакции. Реакция ${}^{8}\text{He}(p,n){}^{8}\text{Li}$ была измерена в RIKEN при энергии пучка ⁸Не 190 МэВ в обратной кинематике [26]. Несмотря на достаточно высокую статистическую обеспеченность результатов, авторам удалось выделить переходы только в два возбужденных состояния ⁸Li с $E_x = 0.98$ МэВ и ≈ 8 МэВ, при этом второе состояние наблюдалось впервые. Как и в наших измерениях, переход $^{8}\mathrm{Li}_{\mathrm{g.s.}}$ \leftrightarrow $^{8}\mathrm{He}_{\mathrm{g.s.}}$ отсутствует. Возможно, это отсутствие связано с запретом гамов-теллеровского перехода между этими состояниями, имеющими спин-четности 2⁺(⁸Li_{g.s.}) и $0^{+}(^{8}\text{He}_{g.s.})$. Нам также неизвестны расчеты спектроскопических факторов для отделения двух протонов в ⁸Li. В связи с этим точные расчеты, описывающие этот механизм, вряд ли возможны. Заметим, что во всех остальных случаях реакции (π^-, pp) соответствующие спины отличаются на единицу и имеют противоположные четности: $(1/2^+)$ (⁷H_{g.s.}) и $3/2^ (^{7}\mathrm{He_{g.s.}}),~1/2^{+}~(^{9}\mathrm{He_{g.s.}})$ и $3/2^{-}~(^{9}\mathrm{Li_{g.s.}}),~1^{-}~(^{10}\mathrm{Li_{g.s.}})$ и $0^{+}~(^{10}\mathrm{Be_{g.s.}}),~(1^{-},2^{-})~(^{12}\mathrm{Li_{g.s.}})$ и $0^{+}~(^{12}\mathrm{Be_{g.s.}}).$

Таким образом, события, наблюдаемые вблизи порога на рис. 2, по-видимому, обусловлены первым возбужденным состоянием ⁸Не. Некоторое превышение в этой области энергий экспериментальных спектров над описанием, наблюдаемое в реакции ${}^{9}\text{Be}(\pi^{-},p)X$ (рис. 1) и ${}^{11}\text{B}(\pi^{-},pd)X$ [12], подтверждает это предположение. Описание этого избытка с помощью порогового распределения Брейта-Вигнера не оказалось успешным. Это согласуется с предположением о том, что в этой реакции наблюдается МДМ, форма которого не описывается распределением Брейта-Вигнера [9]. Отметим также, что непрерывный спектр описывается только одним распределением по фазовому объему с участием возбужденного состояния ⁶He^{*}(1.8) без привлечения каналов с основным состоянием ⁶He.

В спектре MM в реакции ${}^{10}\text{B}(\pi^-, pp)X$ удалось выделить три возбужденных состояния ${}^{8}\text{He}$ со следующими параметрами (E_x, Γ) : (4.6(3) МэВ, $\approx 0.5 \text{ МэВ}$), ($\approx 6.4 \text{ МэB}$, $\approx 0.5 \text{ МэB}$) и (12.2(5) МэВ, 0.8(3) МэВ). Отметим также превышение эксперимента над описанием в области 9.5 МэВ.

В области низких энергий возбуждений обнаруженный в реакции ${}^{10}\mathrm{B}(\pi^-,pp)X$ уровень с $E_x \approx$ ≈ 4.6 МэВ также наблюдался в реакциях ${}^{9}\text{Be}(\pi^{-}, p)X$ и ${}^{11}B(\pi^-, pd)X$. В то же время мы не получили указаний на существование уровня с $E_x \approx 3.6 \,\mathrm{M}$ эВ, который наблюдался в большом числе экспериментов, в том числе и в реакциях с остановившихся пионов (см. табл. 1), что дает дополнительные доказательства селективности этой реакции. Одновременное наблюдение этих двух состояний в реакциях ${}^{9}\text{Be}(\pi^{-}, p)X$ и ${}^{11}\text{B}(\pi^{-}, pd)X$ дает основание предположить существование в области низких энергий возбуждения трех уровней: МДМ при энергии возбуждения $E_x \approx 3 \,\mathrm{MeB}$ и двух резонансных состояний. Отметим, что резонансные состояния находятся вблизи порогов распада ⁸Не в 4 Не + 4n (3.11 МэВ) и ${}^{5}\text{He} + 3n$ (4.0 МэВ). Меньшее число уровней, наблюдаемое в этой области в ионных экспериментах, по-видимому, обусловлено недостаточной статистической обеспеченностью результатов.

Наблюдение состояния с $E_x \approx 6.4$ МэВ в реакции 10 В(π^-, pp)X подтверждает результаты, полученные в реакциях 11 В(π^-, pd)X [12], 14 С(π^-, t^3 Не)X и 14 С(π^-, d^4 Не)X [13]. Во всех этих случаях ширина уровня (~ 0.6 МэВ) существенно больше $\Gamma = 0.15(15)$ МэВ для уровня с $E_x \approx 6.03(10)$ МэВ [14], что указывает на разную природу этих состояний. Выполненный в работе [13] анализ обосновал предположение, что структура валентной оболочки состояния (6.4 МэВ) имеет следующий вид – $(p_{3/2})^2 (p_{1/2})^2$.

Сравнение ширин указывает на то, что спин состояния с $E_x \approx 6.4 \text{ МэВ}$ меньше спина состояния с $E_x \approx 6.03 \text{ МэВ}$, которому приписывают $J^P = 2^-$ [14].

Указание на существование уровня вблизи 9.5 МэВ подтверждается наблюдением состояния с $E_x = 9.3(4)$ МэВ, $\Gamma = 1.7(3)$ МэВ, обнаруженного в реакции ¹¹В $(\pi^-, pd)X$ [12].

Состояние с высокой энергией возбуждения $(12.2(5) \text{ M} \Rightarrow \text{B})$ наблюдалось впервые. Заметим. что это состояние лежит ниже порога распада ${}^{8}\text{He} \rightarrow {}^{3}\text{H} + {}^{3}\text{H} + 2n \ (14.445 \text{ M} \Rightarrow \text{B}),$ поэтому не может быть обусловлено возбуждением lpha-частичного кора. В реакции ${}^{11}B(\pi^-, pd)X$ наблюдалось близкое по энергии возбуждения состояние с $E_x = 11.5(3)$ МэВ, но с заметно худшей статистикой [24]. Так как ошибки измерений перекрываются, не исключено, что в этих реакциях наблюдается одно и то же состояние. В измерениях реакции ${}^{9}\text{Be}(\pi^{-}, p)X$ в этой области наблюдается некоторое превышение экспериментальных данных над описанием (рис. 1), но вследствие быстрого роста непрерывного спектра в инклюзивных измерениях статистическая обеспеченность этого превышения отсутствует.

Заметим, что существование двух высоковозбужденных состояний, лежащих выше 9 МэВ, предсказано в ряде теоретических работ (см. обзор [7]).

4. Заключение. Поиск возбужденных состояний тяжелого изотопа гелия ⁸Не проводился в спектре недостающих масс, полученных в измерениях реакций ${}^{9}\text{Be}(\pi^{-},p)X$ и ${}^{10}\text{B}(\pi^{-},pp)X$. В области низких энергий возбуждений обнаружены три состояния, при этом первое возбужденное состояние, повидимому, представляет собой мягкую дипольную моду при $E_x \approx 3$ МэВ. Были получены подтверждения существования уровней при $E_x \approx 6.4$ и 9.3 МэВ, наблюдаемые нами ранее в других реакциях поглощения остановившихся пионов легкими ядрами. Состояние с высокой энергией возбуждения (12.2(5) МэВ) наблюдалось впервые.

Работа поддержана Министерством науки и высшего образования РФ (проект # 0723-2020-0041) и Российским научным фондом (проект # 18-12-00312).

- D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millenar, J. E. Purcell, C. J. Sheu, and H. R. Weller, Nucl. Phys. A 745, 155 (2005).
- L.V. Chulkov, F. Aksouh, A. Bleile et al. (Collaboration), Nucl. Phys. A 759, 43 (2005).
- F. Skaza, V. Lapoux, N. Keeley et al. (Collaboration), Nucl. Phys. A 788, 260c (2007).

- K. Hagino, N. Takahashi, and H. Sagawa, Phys. Rev. C 77, 054317 (2008).
- Y. Kanada-Enyo, Y. Taniguchi, and M. Kimura, Nucl. Phys. A 805, 392c (2008).
- I. Tanihata, H. Savajols, and R. Kanungo, Progr. Part. Nucl. Phys. 68, 215 (2013).
- Ю. Э. Пенионжкевич, Р. Г. Калпакчиева, Легкие ядра у границы нейтронной стабильности, издательство ОИЯИ, Дубна (2016).
- Л. В. Григоренко, М. С. Головков, С. А. Крупко, С.И. Сидорчук, Г.М. Тер-Акопьян, А.С. Фомичев, В. Худоба, УФН 186, 337 (2016).
- M. S. Golovkov, L. V. Grigorenko, G. M. Ter-Akopian et al. (Collaboration), Phys. Lett. B 672, 22 (2009).
- M. Meister, K. Markenroth, D. Aleksandrov et al. (Collaboration), Nucl. Phys. A 700, 3 (2002).
- J. Xiao, Y.-L. Ye, Z.-X. Cao et al. (Collaboration), Chin. Phys. Lett. 29, 082501 (2012).
- B.A. Chernyshev, Yu.B. Gurov, S.V. Lapushkin, T.I. Leonova, and V.G. Sandukovsky, J. Phys. Conf. Ser. 1390, 012012 (2019).
- Ю.Б. Гуров, С.В. Лапушкин, Т.И. Леонова, В.Г. Сандуковский, Б. Чернышев, Изв. РАН, сер. физ. 83, 530 (2019).
- H. G. Bohlen, A. Blazevic, B. Gebauer, W. von Oertzen, S. Thummerer, R. Kalpakchieva, S. M. Grimes, and T. N. Massey, Progr. Part. Nucl. Phys. 42, 17 (1999).
- М. Г. Горнов, Ю. Б. Гуров, С. В. Лапушкин, П. В. Морохов, В. А. Печкуров, К. Сет, Т. Педлар, Д. Вайс, Д. Цзао, Изв. РАН, сер. физ. 63, 2209 (1998).
- Yu. B. Gurov, V. S. Karpukhin, S. V. Lapushkin, I. V. Laukhin, V. A. Pechkurov, N. O. Poroshin, V. G. Sandukovsky, M. V. Tel'kushev, and B. A. Chernyshev, JETP Lett. 84, 1 (2006).
- 17. Ю.Б. Гуров, С.В. Лапушкин,

Т.И. Леонова, М.В. Телькушев, Б. Чернышев, В.Г. Сандуковский, ЯФ **83**, 193 (2020).

- Yu. B. Gurov, L. Yu. Korotkova, S. V. Lapushkin, R. V. Pritula, V. G. Sandukovsky, M. V. Tel'kushev, and B. A. Chernyshev, JETP Lett. 101, 69 (2015).
- B. A. Chernyshev, A. S. Demyanova, S. A. Goncharov, Yu. B. Gurov, S. V. Lapushkin, A. A. Ogloblin, V. G. Sandukovsky, and W. H. Trzaska, JETP Lett. 110, 97 (2019).
- B. A. Chernyshev, A. S. Demyanova, Yu. B. Gurov, S. V. Lapushkin, T. I. Leonova, A. A. Ogloblin, and V. G. Sandukovsky, J. Phys. Conf. Ser. 1555, 012029 (2020).
- M. G. Gornov, Yu. B. Gurov, P.V. Morokhov, S.V. Lapushkin, V.A. Pechkurov, B.A. Chernyshev, V.G. Sandukovsky, and E.A. Pasyuk, Nucl. Instrum. Methods Phys. Res. A 446, 461 (2000).
- Yu. B. Gurov, S. V. Lapushkin, B. A. Chernyshev, and V. G. Sandukovsky, Phys. Part. Nucl. 40, 558 (2009).
- Ю.Б. Гуров, Д.В. Алешкин, С.В. Лапушкин, И.В. Лаухин, В.А. Печкуров, Н.О. Порошин, В.Г. Сандуковский, М.В. Телькушев, Б. Чернышев, ЯФ 69, 1 (2006).
- B. A. Chernyshev, Yu. B. Gurov, L. Yu. Korotkova, S. V. Lapushkin, R. V. Pritula, and V. G. Sandukovsky, Int. J. Mod. Phys. E 24, 1550004 (2015).
- B. A. Chernyshev, Yu. B. Gurov, V.S. Karpukhin, L. Yu. Korotkova, S. V. Lapushkin, R. V. Pritula, and V.G. Sandukovsky, Eur. Phys. J. A 49, 68 (2013).
- M. Kobayashi, K. Yako, S. Shimoura, M. Dozono, S. Kawase, K. Kisamori, C.S. Lee, S. Michimasa, H. Miya, Sh. Ota, H. Sakai, M. Sasano, and M. Takaki, JPS Conf. Proc. 1, 013034 (2014).
- V. Lapoux, N. Alamanos, and N. Keeley, J. Phys. Conf. Ser. 49, 161 (2006).