УДК 544.4:533.7:678.4:662

ОСОБЕННОСТИ ПРОЦЕССА ТЕРМОДЕСТРУКЦИИ СИНТЕТИЧЕСКИХ КАРКАСНЫХ УГЛЕВОДОРОДОВ И ИХ СМЕСЕЙ

© 2023 г. А. И. Казаков^{1,*}, Л. С. Яновский^{1,2,3}, Ю. В. Томилов⁴, А. А. Молоканов^{1,3}, Н. А. Плишкин¹, Д. Б. Лемперт¹, Н. И. Варламова¹

¹ Федеральный исследовательский центр Проблем химической физики и медицинской химии РАН, Черноголовка Московской обл., 142432 Россия

² Московский авиационный институт (Национальный исследовательский универсиет), Москва, 125310 Россия ³ Мосвковский энергетический институт (Национальный исследовательский университет), Москва, 111250 Россия

⁴ Институт органической химии РАН, Москва, 119991 Россия

*E-mail: akazakov@icp.ac.ru

Поступила в редакцию 18 апреля 2023 г. После доработки 2 мая 2023 г. Принята к публикации 12 мая 2023 г.

Исследована кинетика термодеструкции каркасных углеводородов: экзо-трицикло[5.2.1.0^{2.6}]декана (экзо-ТЦД), его моноциклопропанированного аналога экзо, эндо-тетрацикло[5.3.1.0^{2.6}.0^{8.10}]ундекана (ТЦУ-1) и их смеси в соотношении 1 : 3, а также проведено сравнение термической стабильности исследованных соединений. Экспериментально определено мольное количество образующихся газообразных продуктов термодеструкции данных углеводородов и их смеси. Рассчитан равновесный количественный состав продуктов разложения углеводородов и определены тепловые эффекты термодеструкции при термодинамическом и кинетическом контроле реакции.

Ключевые слова: *экзо*-трицикло[5.2.1.0^{2.6}]декан, *экзо,эндо*-тетрацикло[5.3.1.0^{2.6}.0^{8.10}]ундекан, кинетика термического разложения

DOI: 10.31857/S0028242123020119, EDN: HLGNLT

Каркасные углеводороды (УВ) – производные дициклопентадиена (ДЦПД) [1] – представляют интерес ввиду уникальности их физико-химических свойств: низкая вязкость, большая теплота сгорания и высокая термическая стабильность [2, 3]. Кинетика термодеструкции таких соединений важна при расчете теплотехнических характеристик энергоустановок, этим определяется актуальность ее исследования [3–12].

Цель настоящей работы – установление кинетических закономерностей термической деструкции каркасных УВ, производных ДЦПД, – экзо-трицикло[5.2.1.0^{2.6}]декана (экзо-ТЦД), его моноциклопропанированного аналога экзо,эндо-тетрацикло[5.3.1.0^{2.6}.0^{8.10}]ундекана (ТЦУ-1) и их смеси в соотношении 1 : 3. Данное соотношение установлено как оптимальное при учете уровня низкотемпературных свойств и объемной теплоты сгорания смеси [13].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе определяли термическую стабильность УВ путем исследования процесса газовыделения при их термодеструкции с использованием высокоточной манометрической установки. Последняя позволяет измерять прирост давления при температурах от комнатной до 450°C в стеклянных реакционных сосудах Бурдона, снабженных серповидной мембраной [14] при массе навески \approx 30 мг и внутреннем объеме реакционного сосуда \approx 3 мл, т.е. при величине отношения $m/V \approx 10$ мг/мл. Особенность оборудования, применяемого в [14], состоит в том, что стеклянный сосуд с навеской помещают в разъемную стальную капсулу с регулируемым

ОСОБЕННОСТИ ПРОЦЕССА ТЕРМОДЕСТРУКЦИИ

Структурная Плотность, Q_m^N , Q_{ν}^N , формула кг/л кДж/кг кДж/л к	Структурная формула	Соединение
$0.939 [18] 42181 [18] 39608^* -1$	Λ_7 6	экзо-Трицикло[5.2.1.0 ^{2.6}]декан (экзо-ТЦД), С ₁₀ Н ₁₆
0.9316 [19] 42100 [19] 39400 [19] -1		
× √7	» \\7 <	<i>экзо, эндо</i> -Тетрацикло[5.3.1.0 ^{2.6} .0 ^{8.10}]ундекан
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(111,9-1), 011116
1.006 [21] 42330 [21] 42580 [21] 14		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} $	экзо-трицикло[5.2.1.0 ⁻¹⁰]декан (экзо-тцд), С ₁₀ Н ₁₆ экзо, эндо-Тетрацикло[5.3.1.0 ^{2.6} .0 ^{8.10}]ундекан (ТЦУ-1), С ₁₁ Н ₁₆

Таблица 1. Низшие	массовые и объемные теплоты	сгорания и энтальнии об	разования исспелу	лемых VB
rawinga i. misune		o opunin n sinasibilin oo	ризования неследу	CIVIDIA J D

* – расчет по данным работы [18]; ** – данные ИОХ РАН; *** – расчет по данным ИОХ РАН; **** – расчет по данным работы [20]; ***** – расчет по данным работы [21].

Расчет отсутствующих в литературе величин проведен по формулам: $Q_m^G = Q_m^N + 9.2443.2$ (мас. доля H в углеводороде формулы C_aH_b), кДж/кг; $\Delta H_c^\circ = -Q_m^G$ мол. мас./1000, кДж/моль, $Q_v^G = Q_m^G \circ \rho$, $Q_v^N = Q_m^N \rho$, кДж/л и $\Delta H_f^\circ = a \cdot \Delta H_f^\circ$ (CO₂, газ) + (b/2) ΔH_f° (H₂O, ж) – ΔH_c° , кДж/моль, где Q_m^G и Q_v^G – высшая массовая и объемная теплота сгорания соответственно; ΔH_c° – стандартная энтальпия образования углеводорода; ΔH_f° (CO₂, газ) – стандартная энтальпия образования диоксида углерода в газовой фазе; ΔH_f° (H₂O, ж) стандартная энтальпия образования воды в жидкой фазе.

давлением для компенсации роста давления в стеклянном реакционном сосуде, что сохраняет последний от разрушения. Таким образом можно регистрировать рост давления в реакционном сосуде вплоть до достижения величины ≈ 50 атм.

Объекты исследования – жидкие, в обычных условиях, экзо-ТЦД и ТЦУ-1.

Образец ТЦУ-1 был получен путем каталитического циклопропанирования ДЦПД диазометаном, генерируемым в условиях *in situ* при использовании (PhCN)₂·PdCl₂ в качестве катализатора [15]. Как и следовало ожидать, введение циклопропанового кольца, аннелированного с норборнановым фрагментом, привело как к заметному повышению плотности ТЦУ-1, так и к увеличению энтальпии его образования по сравнению с ТЦД [10, 16, 17] (табл. 1). Как следствие, ТЦУ-1 имеет и более высокую низшую массовую и объемную теплоту сгорания Q^{N}_{m} и Q^{N}_{v} .

Агрегатное состояние исследуемого вещества в сосудах в условиях эксперимента определяли по показателю

$$Z = P/P_s$$

НЕФТЕХИМИЯ том 63 № 2 2023

где P – текущее давление паров вещества в сосуде известного объема, определенное по уравнению Менделеева–Клапейрона при условии, что вся навеска перейдет в пар, $P_{\rm s}$ – максимальное давление при заданной температуре, при котором начнет появляться жидкая фаза, определяемое по уравнению Клаузиуса–Клапейрона.

Исходя из данных по упругости паров исследуемых УВ [13] при температурах до 465°С и при величинах отношения m/V < 10 мг·мл, исходные соединения имеют $Z \le 0.32$, т.е. все исследуемые вещества в условиях эксперимента находятся в парообразном состоянии.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кинетика газофазной термодеструкции *экзо*-ТЦД изучена в температурном интервале 420– 460°С, ТЦУ-1 – в интервале 390–440°С, а смеси этих соединений в соотношении 1 : 3 – в интервале 415–465°С¹). Скорость газовыделения при термо-

¹ Эти экспериментальные данные получены совместно со старшим научным сотрудником ФИЦ ПХФ и МХ [В.В. Дубихиным.]

Рис. 1. Кинетические кривые термодеструкции *экзо*-ТЦД: *1* – 460, *2* – 450, *3* – 430, *4* – 420°С, точки – эксперимент, кривая линия – расчет по закону реакции первого порядка.

деструкции рассмотренных УВ и их смеси хорошо описывается законом реакции 1-го порядка

$$\eta = n/n_{\infty} = 1 - \exp(-kt),$$

где η – глубина термического разложения; n – текущее количество молей газов, определяемое по давлению в сосуде, моль/кг; n_{∞} – полное количество молей выделившихся газов, полученное при экстраполяции на бесконечное время проведения реакции, моль/кг; k – константа скорости реакции, c^{-1} (рис. 1–3).

Величины конечного газовыделения n_m при термодеструкции ТЦУ-1 и смеси экзо-ТЦД /ТЦУ-1 (1:3) близки между собой при всех температурах, в то время как величина n_{∞} при термодеструкции индивидуального экзо-ТЦД более чем в два раза выше (рис. 4). При термодеструкции смеси УВ количество выделяющихся газов на 34% меньше рассчитанного суммарного количества газов при разложении индивидуальных УВ с учетом их массовой доли в смеси. Вероятно, уменьшение накопления газообразных продуктов при разложении экзо-ТЦД в смеси с ТЦУ-1 связано с более глубоким протеканием реакций с участием промежуточных продуктов разложения экзо-ТЦД, приводящим в итоге к образованию большего количества полициклических и конденсированных структур и, со-

Рис. 2. Кинетические кривые термодеструкции ТЦУ-1: *1* – 440, *2* – 433, *3* – 430, *4* – 420, *5* – 413, *6* – 410, *7* – 400, *8* – 393°С; точки – эксперимент, кривая линия – расчет по закону реакции первого порядка.

ответственно, уменьшению количества газообразных продуктов.

Экзо-ТЦД и ТЦУ-1 имеют высокие значения стандартной энтальпии образования $\Delta H_{\rm f}^{\rm o}$ (табл. 1) и менее термостабильны в сравнении с линейными УВ, что в значительной мере связано с существованием дополнительных напряжений вследствие

Рис. 3. Кинетические кривые термодеструкции смеси *экзо*-ТЦД : ТЦУ-1 = 1 : 3. *1* – 465, *2* – 455, *3* – 445, *4* – 435, *5* – 425, *6* – 415°С; точки – эксперимент, кривая линия – расчет по закону реакции первого порядка.

НЕФТЕХИМИЯ том 63 № 2 2023

Рис. 4. Зависимости конечного газовыделения n_{∞} от температуры при термодеструкции: $1 - 3\kappa 30$ -ТЦД, 2 -ТЦУ-1 и 3 -смесь $3\kappa 30$ -ТЦД /ТЦУ-1 = 1 : 3.

существенных отклонений углов между связями от тетраэдрических. Рассчитанная величина стандартной энтальпии образования экзо-ТЦД, полученная суммированием вклада инкрементов четырех СН-групп (-5.5 кДж/моль), шести СН₂-групп (-25.2 кДж/моль) и энергий напряжения трех пятичленных колец (18.7 кДж/моль) [22], имеющихся в молекуле *экзо*-ТЦД, составляет –117.1 кДж/моль, что близко к экспериментальной величине $\Delta H_{\rm f}^{\circ}$, определенной в [18] (табл. 1).

Аналогично для молекулы ТЦУ-1, в состав которой входит шесть СН- и пять СН₂-групп, три пятичленных и один трехчленный цикл с энергией напряжения 101.7 кДж/моль [22], рассчитанная величина $\Delta H_{\rm f}^{\rm o}$ составляет –1.3 кДж/моль, к которой более близка экспериментальная величина $\Delta H_{\rm f}^{\rm o}$ полученная в ИОХ РАН (табл. 1).

Расчет равновесного состава продуктов термодеструкции экзо-ТЦД и ТЦУ-1 при различных температурах, проведенный по программе Тегга [23] (табл. 2 и 3) показал, что основными продуктами термодеструкции являются водород, углерод С(тв) и метан. Другие продукты разложения образуются в следовых количествах, из них больше всего этана, но его содержание в смеси не выше 0.02 мас. %. С ростом температуры в продуктах термодеструкции уменьшается доля метана и увеличиваются доли

Таблица 2. Равновесный состав продуктов термодеструкции экзо-ТЦД в изотермических условиях при температурах 650–1000 К и фиксированном удельном объеме 0.10 м³/кг

Т, К	H ₂ , моль/кг	С(тв), моль/кг	CH_4 , моль/кг	Суммарное давление, МПа
650	1.4	44.8	28.6	1.62
700	2.4	45.2	28.2	1.78
750	3.7	45.9	27.5	1.95
800	5.4	46.8	26.6	2.13
850	7.6	47.8	25.6	2.34
900	10.1	49.1	24.3	2.58
950	13.1	50.6	22.8	2.83
1000	16.3	52.2	21.2	3.12

Таблица 3. Равновесный состав продуктов термодеструкции ТЦУ-1 в изотермических условиях при температурах 650–1000 К и фиксированном удельном объеме 0.10 м³/кг

<i>Т</i> , К	H ₂ , моль/кг	С(тв), моль/кг	CH_4 , моль/кг	Суммарное давление, МПа
650	1.4	47.9	26.3	1.50
700	2.3	48.4	25.8	1.64
750	3.5	49.0	25.2	1.79
800	5.2	49.8	24.4	1.97
850	7.3	50.8	23.3	2.16
900	9.7	52.1	22.1	2.38
950	12.4	53.4	20.7	2.62
1000	15.5	55.0	19.2	2.89

Рис. 5. Аррениусовская зависимость логарифма константы скорости термодеструкции экзо-ТЦД (1), ТЦУ-1 (2) и их смеси 1 : 3 (3) от обратной температуры.

водорода и углерода. Доля углерода в продуктах термодеструкции будет увеличиваться с уменьшением содержания экзо-ТЦД в смеси.

В предположении, что в реакции термодеструкции имеет место термодинамический контроль и, следовательно, продуктами термодеструкции *экзо*-ТЦД и ТЦУ-1 являются водород, метан и углерод с нулевой стандартной энтальпией образования, был проведен расчет возможных теплот реакции термодеструкции этих соединений

 $C_{10}H_{16} = 4CH_4(r) + 6C, Q = 176.6 кДж/моль =$ = 1296.4 кДж/кг; $C_{10}H_{16} = 8H_2(r) + 10C, Q = -122.8 кДж/моль =$ = -901.4 кДж/кг; $C_{11}H_{16} = 4CH_4(r) + 7C, Q = 300.1 кДж/моль =$ = 2024.4 кДж/кг;

 $C_{11}H_{16} = 8H_2(\Gamma) + 11C, Q = 0.7$ кДж/моль = 4.7 кДж/кг.

Таблица 4. Аррениусовские параметры эффективных констант скоростей термодеструкции каркасных углеводородов

Соединение	$\lg[k, c^{-1}]$	$E_{ m эксп},$ кДж/моль
экзо-ТЦД	18±1	310±20
ТЦУ-1	12.6±0.7	220±9
Смесь экзо-ТЦД /ТЦУ-1, 1:3	12.2±0.6	220±8

Видно, что только в случае высоких температур, когда деструкция экзо-ТЦД пройдет полностью до водорода и углерода, процесс будет эндотермическим. Напротив, образование метана в процессе деструкции экзо-ТЦД сопровождается выделением тепла. Деструкция ТЦУ-1 с образованием любого набора продуктов является экзотермической реакцией.

Теплоту реакции деструкции экзо-ТЦД и ТЦУ-1 в случае кинетического контроля с предполагаемым образованием этилена в качестве конечного продукта рассчитывали по уравнениям:

$$C_{10}H_{16} = 4C_2H_4(\Gamma) + 2C, Q = -332.0 \ \kappa Дж/моль =$$

= -2436.8 $\kappa Дж/\kappa\Gamma$;
 $C_{11}H_{16} = 4C_2H_4(\Gamma) + 3C, Q = -208.5 \ \kappa Дж/моль =$
= -1406.3 $\kappa Дж/\kappa\Gamma$.

При этом предположении процесс термодеструкции протекает с поглощением тепла.

Наименее стабильным среди изученных веществ является ТЦУ-1, содержащий в своем составе циклопропановый фрагмент (рис. 5, табл. 4).

Процесс термодеструкции изученных каркасных соединений, относящихся к классу циклических УВ, является цепной неразветвленной радикальной реакцией [24]. Этот процесс протекает по трем параллельным макростадиям, включающим ряд параллельных и последовательных реакций [25]. Продукты первой макростадии – непредельные ациклические и циклические УВ и предельные УВ с меньшим числом атомов углерода по сравнению с исходным УВ. Вторая макростадия представляет собой цепную реакцию циклизации с участием метильных и аллильных радикалов и олефинов с образованием алкилароматических и ароматических УВ. В процессе дегидрогенизации на третьей макростадии образуются полициклические и полиароматические УВ и, в пределе, пиролизный кокс. При термодинамическом контроле реакции термодеструкция УВ протекает с образованием углерода и водорода, скорость этого процесса будет возрастать при увеличении температуры.

В кинетической схеме [26] первой макрокинетической стадии процесса термодеструкции каркасных УВ (рис. 6) реакция зарождения цепи (0) представляет собой разрыв С–С-связи в циклопропановом или циклопентановом звене исследуемых

НЕФТЕХИМИЯ том 63 № 2 2023

Зарождение цепи

$$\xrightarrow{k_0} \xrightarrow{k_0} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} R_1 \stackrel{\bullet}{\longrightarrow} R_2 \stackrel{\bullet}{\longrightarrow} (0)$$

Продолжение цепи

$$\overset{\bullet}{-R_1}\overset{\bullet}{-R_2} \overset{k_1}{\longrightarrow} \overset{\bullet}{-R_1} \overset{\bullet}{-R_3} \overset{\bullet}{-CH} = CH_2 + \overset{\bullet}{C}H_3$$
(1)

$$\overset{\bullet}{-R_1}\overset{\bullet}{-R_2} \overset{k_2}{\longrightarrow} \overset{\bullet}{-R_1}\overset{\bullet}{-R_4} \overset{\bullet}{-CH} = CH_2 + \overset{\bullet}{H}$$
(2)

$$RH + \mathring{C}H_3 \xrightarrow{k_3} \mathring{R}_5 + CH_4$$
(3)

$$RH + \mathring{H} \xrightarrow{k_4} \mathring{R}_5 + H_2$$
(4)

$$\begin{array}{c} \mathbf{H} + \mathbf{H} & \longrightarrow & \mathbf{R}_5 + \mathbf{H}_2 \\ & & & \mathbf{k}_5 \\ & & & \mathbf{k}_5 \\ \end{array}$$

$$R_5 \longrightarrow CH_3 + R_6 - CH = CH_2$$
(5)

$$\mathbf{\hat{R}}_5 \xrightarrow{\kappa_6} \mathbf{\hat{H}} + \mathbf{R}_7 - \mathbf{CH} = \mathbf{CH}_2$$
 (6)

Обрыв цепи

$$\overset{\bullet}{\mathrm{CH}}_{3} + \overset{\bullet}{\mathrm{CH}}_{3} \xrightarrow{k_{7}} \mathrm{C}_{2}\mathrm{H}_{6}$$
(7)

$$\dot{H} + \dot{H} \longrightarrow H_2$$
 (8)

$$\overset{\bullet}{\mathrm{CH}}_{3} + \overset{\bullet}{\mathrm{H}} \xrightarrow{k_{9}} \mathrm{CH}_{4}$$
(9)

$$\stackrel{\bullet}{\mathbf{R}}_{5} + \stackrel{\bullet}{\mathbf{R}}_{5} \xrightarrow{\kappa_{10}} \mathbf{R}_{5} \xrightarrow{\kappa_{10}} \mathbf{R}_{5}$$
(10)

$$R_5 + CH_3 \xrightarrow{k_{11}} R_5 - CH_3$$
 (11)

$$\mathbf{R}_{5} + \mathbf{H} \xrightarrow{\kappa_{12}} \mathbf{R}_{5} - \mathbf{H}$$
 (12)

Рис. 6. Схема элементарных реакций при термодеструкции каркасных углеводородов: RH, R_i и R_i – исходный углеводород, промежуточные углеводороды и радикалы различного строения соответственно.

каркасных УВ. Величина энергии активации константы скорости зарождения цепи E_0 равна величине энергии связи С–С в циклопропановом кольце (при термодеструкции ТЦУ) и в циклопентановом кольце (при термодеструкции ТЦД). Эти величины найдены из теплот атомизации циклопропана и циклопентана с учетом того, что энергия связи С–Н в циклопропане равна 428.9 кДж/моль, а в циклопентане 408.4 кДж/моль [27]. Получено, что энергия связи С–С в циклопропане равна 278.2 кДж/моль, а в циклопентане – 352.3 кДж/моль.

НЕФТЕХИМИЯ том 63 № 2 2023

Реакции (1)–(6) являются реакциями продолжения цепи. Реакции (1) и (2) описывают распад образовавшихся бирадикалов по связям, находящимся в β-положении относительно атома углерода, обладающего свободной валентностью, с образованием олефина и метильного радикала или радикала атома водорода. Следующими стадиями продолжения цепи являются реакции (3) и (4), по которым метильный радикал и атом водорода реагируют с исходным УВ с образованием метана или водорода и регенерацией радикалов. Образующиеся радикалы в результате мономолекулярного распада по реакциям (5) и (6) образуют олефины и регенерируют метильные радикалы и атомы водорода.

Обрыв цепи может происходить при столкновении любых радикалов, атомов водорода, при перекрестной рекомбинации атомов водорода и радикалов или их гибели на стенке. При гибели радикалов на стенке в выражение для скорости реакции должно входить произведение констант скоростей зарождения и продолжения цепи, и наблюдаемая энергия активации в этом случае больше энергии активации зарождения цепи, что не согласуется с наблюдаемыми энергиями активации реакции термодеструкции исследуемых каркасных УВ, которые по абсолютной величине меньше энергии активации зарождения цепи. Далее, вследствие большой величины константы скорости реакции (4) продолжения цепи с участием атомов водорода, т.е. высокой реакционной способности атомов водорода, их концентрация в реакционной смеси существенно меньше концентрации радикалов CH₃ и \dot{R}_i . Поэтому при близости величин констант скоростей реакций квадратичного обрыва цепи (реакции (7)-(12), скорости реакций обрыва с участием атома водорода (реакции (8), (9), (12)) будут невысоки и ими можно пренебречь. Кроме того, порядок реакции термодеструкции при реализации обрыва при бимолекулярном столкновении радикалов CH₃ по реакции (7) был бы больше первого порядка, а при обрыве по бимолекулярной реакции радикалов R_i (реакция (10)) меньше первого, что не согласуется с наблюдаемым в эксперименте первым порядком реакции термодеструкции каркасных УВ.

Таким образом, первый порядок реакции в случае протекания цепной неразветвленной реакции деструкции изученных каркасных УВ может наблюдаться в случае, если реализуется квадратичный обрыв цепи по реакции рекомбинации (11) метильных радикалов с макрорадикалами \dot{R}_5 , а лимитирующей стадией в продолжении цепи является мономолекулярный распад макрорадикала \dot{R}_5 по реакции (5) с образованием олефинов и регенерацией метильных радикалов. При применении условия стационарности $k_0[RH] = 2k_{11}[\dot{R}_i][\dot{C}H_3]$ и условия длинных цепей $k_3[RH][\dot{C}H_3] = k_5[\ddot{R}_i]$ получено, что $[\dot{R}_i] = (k_0k_3/2k_5k_{11})^{1/2}[RH]$, и скорость термодеструкции выражается в виде:

$$W = k_5[\dot{\mathbf{R}}_i] = \left(\frac{k_0 k_3 k_5}{2k_{11}}\right)^{1/2} [\text{RH}].$$

Обрыв цепи по реакции (11) идет без энергии активации, тогда наблюдаемая в эксперименте энергия активации должна быть равна:

$$E_{3\text{KCII}} = 0.5(E_0 + E_3 + E_5).$$

Тот факт, что $E_{3\kappaсn}$ (табл. 4) меньше энергии связи С–С в *экзо*-ТЦД и ТЦУ-1, соответственно, служит дополнительным доказательством протекания их термодеструкции по механизму цепных неразветвленных реакций. Исходя из экспериментальных величин $E_{3\kappaсn}$ для полусуммы энергий активаций $0.5(E_3 + E_5)$, были получены величины: для *экзо*-ТЦД – 310–0.5·352.3 = 133.9 кДж/моль и для ТЦУ-1 – 220–0.5·278.2 = 80.9 кДж/моль.

В результате проведенных экспериментальных исследований экзо-трицикло[5.2.1.0^{2.6}]декана (экзо-ТЦД) и экзо,эндо-тетрацикло[5.3.1.0^{2.6}.0^{8.10}]ундекана (ТЦУ-1), а также их смеси в соотношении 1 : 3 установлено, что:

 – экзо-ТЦД и ТЦУ-1 в газовой фазе разлагаются с соизмеримыми скоростями в температурном интервале 390–465°С;

– термодеструкция экзо-ТЦД, ТЦУ и их смеси в весовом соотношении 1 : 3 протекает по механизму неразветвленной цепной реакции, в которой зарождение цепи протекает по реакции разрыва циклопропанового или циклопентанового звена, в продолжении цепи лимитирует стадия мономолекулярного распада макрорадикала с образованием олефинов и регенерацией метильных радикалов, и заканчивается квадратичным обрывом цепи по реакции рекомбинации метильных радикалов с макрорадикалами;

 наименее стабильным является ТЦУ-1, при термораспаде которого реакция зарождения цепи протекает с меньшей энергией активации при разрыве напряженного циклопропанового звена;

– количество газообразных продуктов термодеструкции смеси УВ экзо-ТЦД и ТЦУ-1 (1 : 3) на 34% меньше рассчитанного суммарного количества газообразных продуктов разложения индивидуальных экзо-ТЦД и ТЦУ-1 с учетом их массовой доли в смеси вследствие более глубокого протекания реакций с участием промежуточных продуктов разложения экзо-ТЦД, приводящего в итоге к образованию большего количества полициклических конденсированных структур.

ФИНАНСИРОВАНИЕ РАБОТЫ

А.И. Казаков, Л.С. Яновский, А.А. Молоканов, Н.А. Плишкин, Д.Б. Лемперт, Н.И. Варламова выполнили работу при финансовой поддержке Министерства образования и науки РФ в рамках государственного задания АААА-А19-119120690042-9.

Ю.В. Томилов - о его роли во вкладе в исследование см. выше.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

А.И. Казаков провел анализ литературных данных по механизму разложения органических соединений, участвовал в подготовке разделов статьи, написал раздел: «Обсуждение результатов»;

Л.С. Яновский участвовал в постановке задач исследования, в обсуждении результатов работы, в формулировке выводов по работе;

Ю.В. Томилов участвовал в постановке задач исследования, выборе объектов исследования, подготовке экспериментальных образцов;

А.А. Молоканов провел анализ литературных данных по термическому разложению каркасных УВ, обработку экспериментальных данных по кинетике термического разложения соединений и участвовал в подготовке разделов статьи и написал разделы: «Введение», «Экспериментальная часть», «Заключение» и части раздела «Обсуждение результатов»;

Н.А. Плишкин получил данные по кинетике термодеструкции паров каркасных соединений;

Д.Б. Лемперт провел расчет равновесного состава продуктов термодеструкции углеводородов по программе Terra;

Н.И. Варламова участвовала в выборе объектов исследования и постановке задач исследования, анализе литературы.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Казаков Анатолий Иванович, и.о зав. лабораторией, г.н.с., д.х.н., ORCID: https://orcid.org/0000-0002-3760-7514

НЕФТЕХИМИЯ том 63 № 2 2023

Яновский Леонид Самойлович, зав. отделом, д.т.н., проф., ORCID: https://orcid.org/0000-0002-2603-6795

Томилов Юрий Васильевич, зав. лабораторией, д.х.н., ORCID: https://orcid.org/0000-0002-3433-7571

Молоканов Александр Александрович, инженер, к.т.н., ORCID: https://orcid.org/0000-0001-7913-2732

Плишкин Николай Алексеевич, с.н.с., к.т.н., ORCID: https://orcid.org/0009-0005-9786-3340

Лемперт Давид Борисович, и.о. зав. лабораторией, г.н.с., к.х.н., ORCID: https://orcid.org/0000-0002-0219-1571

Варламова Наталья Ивановна, инженер, ORCID: https://orcid.org/0009-0003-6432-4629

СПИСОК ЛИТЕРАТУРЫ

- Shorunov S.V., Zarezin D.P., Samoilov V.O., Rudakova M.A., Borisov R.S., Maximov A.L., Bermeshev M.V. Synthesis and properties of high-energy-density hydrocarbons based on 5-vinyl-2-norbornene // Fuel. 2021. V. 283. № 118935. P. 1–7. https://doi. org/10.1016/j.fuel.2020.118935
- Яновский Л.С., Федоров Е.П., Варламова Н.И., Разносчиков В.В., Демская И.А., Томилов Ю.В., Меньщиков В.А. Проблемы применения высокоэнергоемких жидких горючих для летательных аппаратов с воздушно-реактивными двигателями // Авиационная промышленность. 2016. № 1. С. 60–66.
- 3. Wang Y., Cheng Y., Li M., Jiang P.X., Zhu Y. Experimental and theoretical modeling of the effects of pressure and secondary reactions on pyrolysis of JP-10 at supercritical pressures // Fuel. 2021. V. 306. № 121737. P. 1–14. https://doi.org/10.1016/j.fuel.2021.121737
- 4. *Liu L., Zhang Q.* Comparison of detonation characteristics in energy output of gaseous JP-10 and propylene oxide in air // Fuel. 2018. V. 232. P. 154–164. https://doi.org/10.1016/j.fuel.2018.05.149
- 5. Park S.H., Kwon C.H., Kim J., Chun B.H., Kang J.W., Han J.S., Jeong B.H., Kim S.H. Thermal stability and isomerization mechanism of exotetrahydrodicyclopentadiene: Experimental study and molecular modeling // Ind. and Engin. Chem. Research. 2010. V. 49. № 18. P. 8319–8324. https://doi. org/10.1021/ie100065m
- 6. Zhao L., Yang T., Kaiser R.I., Troy T.P., Xu B., Musahid A., Alarcon J.D., Mebel A.M., Zhang Y., Cao C., Zou J. A vacuum ultraviolet photoionization study on high-temperature decomposition of JP-10 (exotetrahydrodicyclopentadiene) // Physical Chemistry

Chemical Physics. 2017. V. 19. № 24. P. 1–5. https:// doi.org/10.1039/C7CP01571B

- 7. Xing Y., Li D., Xie W., Fang W., Guo Y., Lin R. Catalytic cracking of thricyclo[5.2.1.0(^{2.6})]decane over HZSM-5 molecular sieves // Fuel. 2010. V. 89. № 7. P. 1422–1428. https://doi.org/10.1016/j.fuel.2009.10.025
- Zhao Y, Masuoka T., Tsuruta T. Theoretical studies on transient pool boiling based on microlayer/macrolayer model (mechanism of transition from nonboiling regime to film boiling) // Transactions of the Japan Soc. of Mechanical Engineers Series B. 1997. V. 63. № 607. P. 964–969. https://doi.org/10.1299/kikaib.63.964
- Cooper M., Shepherd J.E. Experiments studying thermal cracking, catalytic cracking, and pre-mixed partial oxidation of JP-10 // 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003. P. 1–20. https://doi.org/10.2514/6.2003-4687
- Keshavarz M.H., Zamani M., Atabaki F., Monjezi K.H. Theoretical investigation of phase transformations and molecular surface properties of polycyclic saturated hydrocarbon isomers of JP-10 // Computational and Theoretical Chemistry. 2013. V. 1006. P. 105–112. https://doi.org/10.1016/j.comptc.2012.11.019
- Li G., Zhang C., Wei H., Xie H., Guo Y., Fang W. Investigations on the thermal decomposition of JP-10/ iso-octane binary mixtures // Fuel. 2016. V. 163. P. 148– 156. https://doi.org/10.1016/j.fuel.2015.09.052
- Vandewiele N.M., Magoon G.R., Van Geem K.M., Reyniers M.F., Green W.H., Marin G.B. Experimental and modeling study on the thermal decomposition of jet propellant-10 // Energy and Fuels. 2014. V. 28. № 8. P. 4976–4985. https://doi.org/10.1021/ef500936m
- Yanovskiy L.S., Varlamova N.I., Kazakov A.I., Molokanov A.A., Plishkin N.A. Thermophysical properties of high energy synthetic hydrocarbons // J. of Physics: Conference. Series. 2019. V. 1385. № 012011. P. 1–7. https://doi.org/10.1088/1742-6596/1385/1/012011
- Tarasov G.A., Molokanov A.A., Plishkin N.A., Kazakov A.I., Varlamova N.I., Yanovskiy L.S., Larikova T.S. A complex of manometric methods for studying thermophysical, thermochemical properties and thermal stability of energy-intensive compounds // J. of Physics: Conference Series. 2021. V. 1891. № 012056. P. 1–8. https://doi.org/10.1088/1742-6596/1891/1/012056
- Nefedov O.M., Tomilov Yu.V., Kostitsyn A.B., Dzhemilev U.M., Dokichev V.A. Cyclopropanation of unsaturated compounds with diazomethane generated in situ. A new efficient and practical route to cyclopropane derivatives // ChemInform. 1992. V. 23. № 39. P. 13–15. https://doi. org/10.1002/chin.199239142

- Brotton S.J., Kaiser R.I. Effects of nitrogen dioxide on the oxidation of levitated *exo*-tetrahydrodicyclopentadiene (JP-10) droplets doped with aluminum nanoparticles // J. of Physical Chemistry A. 2021. V. 125. № 13. P. 2727– 2742. https://doi.org/10.1021/acs.jpca.0c10155
- 17. Zhang Q., Liu X. Explosion parameters of gaseous JP-10/air mixtures // Central European Journal of Energetic Materials. 2016. V. 13. № 1. P. 261–270. https://doi. org/10.22211/cejem/64982
- Smith N.K., Good W.D. Enthalpies of combustion of ramjet fuels // AIAA J. 1979. V. 17. № 8. P. 905–908. https://doi.org/10.2514/3.61244
- Rudakova M.A., Zarezin D.P., Shorunov S.V., Samoilov V.O., Ilyin S.O., Maximov A.L., Bermeshev M.V. High-energy-density liquid spiro-norbornanes from methylenenorbornane // Energy Fuels. 2022.
 V. 36. P. 11930–11939. https://doi.org/10.1021/acs. energyfuels.2c02220
- 20. Oh C.H., Park D.I., Ryu J.H., Cho J.H., Han J.-S. Syntheses and characterization of cyclopropane-fused hydrocarbons as new high energetic materials // Bulletin of the Korean Chem. Soc. 2007. V. 28. № 2. P. 322–324. https://doi.org/10.5012/bkcs.2007.28.2.322
- Wei W., Baian P., Chi M., Chengxiang Sh., Lun P., Xiangwen Zh., Ji-Jun Z. Pd/C catalytic cyclopropanation of polycyclic olefins for synthesis of high-energy-density strained fuels // AIChE J. 2023. e18085. P. 1–11. https:// doi.org/10.1002/aic.18085
- 22. Кизин А.Н., Дворкин П.Л., Рыжова Г.Л., Лебедев Ю.А. Параметры для расчета стандартных энтальпий образования органических соединений в жидком состоянии // Изв. АН СССР. Сер. хим. 1986. № 2. С. 372–375.
- 23. *Trusov B.G.* Program system terra for simulation phase and chemical equilibrium // Proc. The XIV Intern. symp. on chemical thermodynamics. St. Petersburg. Russia. 2002. P. 483–484.
- 24. Эмунуэль Н.М., Кнорре Д.Г. Курс химической кинетики. М.: Высш. школа., 1984. 463 с.
- 25. Солодова Н.Л., Абдулин А.И. Пиролиз углеводородного сырья. Казань: Казан. гос. технол. ун-т, 2007. 230 с.
- Магарил Р.3. Механизм и кинетика гомогенных термических превращений углеводородов. М.: Химия, 1970. 229 с.
- 27. Туманов В.Е., Денисов Е.Т. Энергия напряжения цикла и ее влияние на прочность С–Н-связей в циклоалканах, циклоалкенах, циклоалкилароматических соединениях и О–Н-связей в циклокарбоновых кислотах // Бутлеровские сообщения. 2013. Т. 35. № 9. С. 139–144.