УДК 665.642.2, 665.642.3

ИЗУЧЕНИЕ ПРЕВРАЩЕНИЯ КОМПОНЕНТОВ ТЯЖЕЛОЙ НЕФТИ В ПРОЦЕССЕ ИНИЦИИРОВАННОГО КРЕКИНГА

© 2023 г. Н. Н. Свириденко^{1,*}, Г. С. Певнева^{1,**}, Н. Г. Воронецкая^{1,***}, И. С. Король^{2,****}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия ² ФГБУН Томский филиал Института нефтегазовой геологии и геофизики СО РАН, 634055 Томск, Россия

*e-mail: nikita26sviridenko@gmail.com **e-mail: pevneva@ipc.tsc.ru ***e-mail: voronetskaya@ipc.tsc.ru ****e-mail: korolis@ipgg.sbras.ru Поступила в редакцию 28.10.2022 г. После доработки 11.11.2022 г. Принята к публикации 07.12.2022 г.

Изучено влияние бутилбромида на термические превращения тяжелой нефти Кармальского месторождения (Республика Татарстан) в присутствии инициирующей добавки – *н*-бутилбромида. Показано, что добавка бутилбромида увеличивает выход бензиновых и дизельных фракций за счет деструкции высокомолекулярных компонентов. Установлено, что почти весь бром из бутилбромида при крекинге тяжелой нефти попадает в продукты уплотнения, а бутильный радикал – в состав газообразных продуктов. Отмечено, что в присутствии бутилбромида меняется направленность термических превращений углеводородов. Существенно возрастает количество низкомолекулярных алканов и изопреноидов, уменьшается содержание циклогексанов и циклопентанов, происходит полная деструкция три-, тетра- и пентациклических насыщенных углеводородов по сравнению с исходной нефтью.

Ключевые слова: тяжелая нефть, смолы, асфальтены, инициирующая добавка, бутилбромид, углеводороды, превращения, крекинг

DOI: 10.31857/S0023117723020147, EDN: CBKSKB

введение

Тяжелые нефти содержат высокие количества нежелательных компонентов: асфальтенов, серы, азота и металлов [1], которые при первичной переработке сырья концентрируются в нефтяных остатках [2] и усложняют их дальнейшее использование ввиду образования продуктов уплотнения, необходимости использования жестких условий проведения процессов переработки, дезактивации катализаторов [3] и т.д.

Одним из способов, позволяющих достичь более глубокой трансформации смол и асфальтенов в низкомолекулярные компоненты, снизив тем самым эти нежелательные последствия, является инициированный крекинг в присутствии органических веществ (инициаторов) [4, 5]. Кроме того, инициированный крекинг проводится в присутствии доноров водорода, в качестве которых используют нафтеноароматические соединения, такие как тетралин и т.д. [6].

Ранее было показано [7], что добавка *н*-бутилбромида в количестве 0.71% способствует увеличению выхода низкомолекулярных углеводородов за счет глубокой деструкции смол в процессе крекинга деасфальтанизированной нефти Усинского месторождения, поэтому целью данной работы было изучение превращения компонентов тяжелой нефти в процессе крекинга в зависимости от количества инициирующей добавки *н*-бутилбромида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследования была взята тяжелая кармальская нефть (республика Татарстан), основные физико-химические характеристики которой представлены в табл. 1. Сырье характеризуется высоким содержанием серы ($S_o = 37000 \ ppm$) и смолисто-асфальтеновых веществ (более 30 мас. %), и низким выходом дистиллятных фракций, выкипающих до 360°С (41.3 мас. %).

Крекинг тяжелой нефти проводили в стационарном режиме в автоклавах объемом 12 см³. Масса нефти, загружаемой в реактор, составляла 7 г. Процесс проводили при 450°С в течение 100 мин. Данные условия являются оптимальны-

Показатель	Нефть			
Атомное отношение Н/С	1.71			
Массовая доля S, <i>ppm</i>	37000			
Плотность, кг/м ³	955.9			
Кинематическая вязкость, сСт	1609.0			
Фракционный состав, мас. %				
HK-200°C	6.7			
200–360°C	34.6			
>360°C	58.7			
Вещественный состав, мас. %				
Масла	70.3			
Смолы	24.5			
Асфальтены	5.2			

Таблица 1. Физико-химические характеристики тяжелой нефти

ми. Количество инициирующей добавки — бутилбромида (C_4H_9Br) линейного строения, составляло от 0.29 до 1.43 мас. %. При выборе количества добавки руководствовались ранее полученными экспериментальными данными [7], а также предполагали, что вследствие высокой реакционной способности бутилбромида его количество в реакционной среде, превышающее 1.5 мас. %, может привести к нежелательным последствиям. Для подтверждения негативного влияния добавки в количествах выше 1.5 мас. %, был проведен крекинг с добавкой 7.14 мас. % C_4H_9Br .

Выход газообразных продуктов, образующихся при термической обработке, определяли по потере массы реактора с образцом после их удаления из реактора. Жидкие продукты удаляли декантацией. Для полного их удаления реактор промывали несколькими порциями хлороформа. Затем декантированную жидкость и хлороформные экстракты объединяли, растворитель упаривали под вакуумом, жидкие продукты высушивали, взвешивали и определяли их выход. За массу твердых продуктов уплотнения ("кокса") принималась разница между массой реактора до эксперимента и после полного удаления жидких продуктов.

Содержание асфальтенов определяли, разбавляя пробу образца *н*-гексаном в объемном соотношении 1 : 40, выдерживая раствор в течение суток, отфильтровывая выпавший осадок. Полученный осадок помещали в бумажный патрон и в аппарате Сокслета промывали *н*-гексаном от масел (углеводородов) и смол, затем асфальтены из патрона вымывали хлороформом, далее отгоняли растворитель и сушили асфальтены до постоянного веса. Гексановый раствор присоединяли к деасфальтенизированному образцу, отгоняли растворитель и выделенные мальтены наносили на слой активированного силикагеля ACK (соотношение 1 : 20), загружали полученную смесь силикагеля с адсорбированным материалом в экстрактор Сокслета и последовательно вымывали нефтяные масла *н*-гексаном и смолы – смесью этанола и бензола (1:1) при температурах кипения данных растворителей. После удаления растворителей из гексанового и спирто-бензольного элюатов, высушивания и доведения до постоянного веса определяли соответственно содержание масел и смол.

Фракционный состав жидких продуктов крекинга определяли на хроматографе "*Кристалл-2000M*" с пламенно-ионизационным детектором, используя кварцевую капиллярную колонку CR-5 длиной 30 м и внутренним диаметром 0.25 мм, газноситель — гелий. Условия хроматографирования: линейное повышение температуры от 40 до 290°C, скорость нагрева термостата колонки — 15° C/мин. Идентификацию УВ для разделения отрезков хроматограмм на бензиновую (HK – 200°C) и дизельную (200–360°C) фракции проводили по временам удерживания *н*-алканов с использованием калибровочной смеси C₈–C₄₀ SIGMA Aldrich.

Определение углеводородного состава газообразных продуктов крекинга нефти проводили с помощью газохроматографического метода на хроматографе "Кристалл-5000" согласно ГОСТ 31371.3-2008. Детектирование водорода, кислорода и азота проводилось на колонке, наполненной молекулярными ситами NaX (фракция 80–100 меш., длина колонки 3 м, внутренний диаметр 2 мм). Скорость газа-носителя (аргон) — 30 мл/мин. Разделение углеводородов C_1-C_6 проведено на колонке, наполненной полимерным сорбентом *Рогарак R* (фракция 80–100 меш., длина колонки 3 м, внутренний диаметр 2 мм). Скорость газа-носителя (аргон) — 30 мл/мин.

Хромато-масс-спектральный анализ (ГХ/МС) состава масел проведен на квадрупольной системе Shimadzu GCMS-QP5050A с компьютерной системой регистрации и обработки информации. Для разделения компонентов использована капиллярная кварцевая колонка *CR5-MS* длиной 30 м, с внутренним диаметром 0.25 мм и толщиной нанесенного слоя 5% фенил – 95% диметилполисилоксана – 0.25 µм. Газ-носитель – гелий. Деление потока 1:12. Анализ проводили в режиме работы детектора Scan (полное сканирование ионов в диапазоне масс от 50 до 800 а.е.м.) при программировании температуры, начиная с 80 до 290°С со скоростью нагрева 2°С/мин. Конечную температуру поддерживали постоянной в течение 25 мин. Ионизирующее напряжение - 70 eV, температуры инжектора и интерфейса 290°С. Сбор и обработка данных проводились с помощью про-

СВИРИДЕНКО и др.

Содержание, мас. %	Исходная нефть	Крекинг без добавки	Количество добавки бутилбромида, мас. %			
			0.29	0.71	1.43	7.14
"Кокс"	_	2.0	2.7	3.2	3.8	13.3
Газ	_	1.8	3.8	4.1	5.9	11.5
ЖП	100	96.2	93.5	92.7	91.0	75.2
Μ	70.3	72.9	77.9	80.6	80.5	67.9
С	24.5	17.9	12.8	9.6	7.9	6.4
А	5.2	5.4	2.8	2.5	2.6	0.9
Фракционный состав, мас. %						
HK-200 °C	6.7	12.7	16.3	25.6	21.5	н/о
200-360°C	34.6	39.4	42.9	45.6	39.9	н/о
>360 °C	58.7	44.1	34.3	21.6	29.6	н/о

Таблица 2. Материальный баланс и состав жидких продуктов крекинга тяжелой нефти

Примечание. ЖП – жидкие продукты; М – масла; С – смолы; А – асфальтены.

граммы *GCMSsolution*. Идентифицикацию соединений осуществляли путем сравнения полученных масс-спектров с масс-спектрами, имеющимися в библиотеках *NIST*. Относительное содержание идентифицированных соединений рассчитывалось как отношение площади пика компонента на масс-фрагментограмме к сумме площадей пиков на масс-фрагментограммах всех идентифицированных соединений.

Определение содержания серы в жидких образцах проводили с помощью рентгенофлуоресцентного энергодисперсионного анализатора серы в нефтях и нефтепродуктах "*Спектроскан S*" (ГОСТ Р 51947-2002). Диапазон измерений массовой доли серы от 0.002 до 5%.

Определение содержания серы и брома в продуктах уплотнения проводили с помощью волнового рентгенофлуоресцентного спектрометра последовательного анализа *ARL Perform'X 4200* (*Thermo Fisher Scientific*), расчет и обработку результатов проводили с помощью программы *Oxsas* методом *UniQuant*.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Состав жидких продуктов крекинга тяжелой нефти представлен в табл. 2. Установлено, что крекинг нефти без добавки способствует образованию дополнительных количеств масел за счет деструкции смол, содержание которых снизилось на 6.6 мас. %. Добавка бутилбромида способствует ускорению реакций деструкции высокомолекулярных компонентов нефти, за счет чего линейно увеличивается выход газа и продуктов уплотнения. Увеличение количества добавки в ряду $0.29\% \rightarrow 0.71\% \rightarrow 1.43\% \rightarrow 7.14\%$ позволяет снизить суммарное содержание смолисто-асфальтеновых компонентов с 29.7 до 7.3 мас. %, а

содержание масел увеличивается на 7–10 мас. % по сравнению с исходным сырьем (табл. 2). Исключение составляет эксперимент с добавкой 7.14% бутилбромида, в котором выход масел на 2.4 мас. % меньше, чем в исходной нефти.

Проведение крекинга нефти в присутствии добавки бутилбромида приводит к ускорению газои коксообразования (табл. 2). С увеличением количества внесенной добавки бутилбромида выход газов и продуктов уплотнения увеличивается ~ в 6.3 и 6.6 раза по сравнению с крекингом без добавки, что согласуется с результатами, представленными в работе [5]. При этом наибольший выход бензиновой (НК-200°С) и дизельной (200-360°С) фракций достигается при крекинге с 0.71 мас. % бутилбромида. Дальнейшее увеличение количества добавки приводит к снижению выхода светлых фракций. Фракционный состав жидких продуктов крекинга с добавкой 7.14% С₄Н₉Вг не определялся вследствие минимального выхода жидких продуктов (75.2 мас. %), что не удовлетворяет цели исследования – увеличению выхода светлых фракций (табл. 2). Таким образом, исходя из полученных данных (табл. 2), оптимальным количеством бутилбромида является 0.71 мас. %.

Значения атомного отношения H/C отражают степень водородной ненасыщенности компонентов сырья. По данному отношению косвенно можно определить тип реакций, протекающих при крекинге нефти. Как видно из табл. 3, наблюдающаяся при добавлении C₄H₉Br трансформация смол и асфальтенов обусловлена реакциями дегидрирования и деалкилирования, что отражается на снижении H/C в их молекулах. Атомное отношение H/C в смолах снижается в ряду: исходные (1.29) \Rightarrow крекинг (1.19) \Rightarrow крекинг с добавкой 0.29 мас. % бутилбромида (1.15) \Rightarrow крекинг с

Компонент	Исходная нефть	Крекинг без добавки	Количество добавки бутилбромида, мас. %		
			0.29	0.71	1.43
Смолы	1.29	1.19	1.15	1.12	1.20
Асфальтены	1.23	1.30	0.92	0.90	0.97

Таблица 3. Атомное отношение H/C в смолах и асфальтенах, выделенных из исходной нефти и продуктов ее крекинга

добавкой 0.71 бутилбромида (1.12). Для асфальтенов наибольшее значение H/C имеют асфальтены крекинга без добавки, но также как и для смол этот параметр снижается при проведении крекинга в присутствии бутилбромида. Увеличение количества добавки до 1.43 мас. % приводит к увеличению соотношения H/C в смолах и асфальтенах. Вероятно, это обусловлено тем, что при данном количестве добавки скорость образования смол и асфальтенов из углеводородов ускоряется.

Одной из негативных характеристик тяжелого углеводородного сырья является повышенное содержание в нем серы, поэтому при изучении процессов крекинга особое внимание уделяется не только выходу светлых фракций, но и анализу распределения серы в продуктах. Количество серы в жидких продуктах при крекинге нефти без добавки снижается с 37000 *ppm* в исходной нефти до 33400 *ppm*.

При увеличении количества добавки бутилбромида содержание серы в жидких продуктах линейно снижается с 27600 до 24000 *ppm*, тогда как в твердых продуктах оно увеличивается (рис. 2,а). В газообразных продуктах крекинга с добавкой количество сероводорода составляет 0.8–1.1 мас. %.

Закономерно возникает вопрос о распределении брома в продуктах крекинга. Согласно данным, представленным на рис. 2,6, бром распределяется следующим образом: бо́льшая его часть концентрируется в продуктах уплотнения, в составе жидких продуктов его содержание незначительно.

В составе газообразных продуктов крекинга нефти без и в присутствии бутилбромида преобладают H_2S , CO_2 , CH_4 (рис. 3). Тот факт, что кармальская нефть является высокосернистой, обуславливает высокое содержание сероводорода в продуктах крекинга. Для газообразных продуктов крекинга с бутилбромидом характерно значительное количество в них бутана $h-C_4H_{10}$ (рис. 3). Его содержание увеличивается в 11–33 раз с увеличением количества добавки бутилбромида. Данный факт объясняется тем, что во время крекинга происходит разрыв связи C–Br в молекуле бутилбромида с образованием алкана. Бром концентрируется, в основном, в продуктах уплотнения (рис. 2,6).

Детальная информация о влиянии добавки бутилбромида на состав масел продуктов крекинга получена методом хромато-масс-спектрометрии. Изучен состав алифатических, нафтено- и алкилароматических углеводородов (УВ), а также серосодержащих соединений (СС) в продуктах термолиза с оптимальным количеством бутилбромида (0.71 мас. %). В табл. 4 приведены характеристичные ионы изученных классов соединений и данные по их содержанию.

По данным хромато-масс-спектрометрии алканы исходной тяжелой нефти представлены преимущественно изопреноидными структурами (рис. 4,а) при практически полном отсутствии *н*-алканов. Процесс же крекинга приводит к об-

Рис. 1. Содержание в жидких и твердых (коксообразных) продуктах: серы (а); брома (б).

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2-3 2023

Рис. 2. Состав газообразных продуктов крекинга.

Рис. 3. Хроматограммы по полному ионному току (0.71 мас. % бутилбромида).

разованию *н*-алканов (рис. 4,6,в). Согласно радикально-цепному механизму, имеющему место при термическом воздействии, *н*-алканы могут быть образованы в результате деструкции алкилзамещенных цикланов и аренов, отрыва алкильных фрагментов молекул смол и асфальтенов, раскрытия нафтеновых колец [8]. В продуктах крекинга в присутствии добавки бутилбромида количество *н*-алканов увеличивается до 30.4% (табл. 4). Гомологический ряд *н*-алканов термолизатов составляют соединения $C_{9-10}-C_{34-42}$, а изопреноидов – $C_{13}-C_{21}$. Для оценки изменений в составе *н*-алканов термолизатов использовали соотношение суммарного содержания низкомолекулярных *н*-алканов C_9-C_{20} к содержанию высокомолекулярных $C_{21}-C_{34}$ гомологов (нм/вм) (табл. 5). Крекинг в присутствии бутилбромида приводит к образованию гораздо большего количества низкомолекулярных *н*-алканов по сравнению с крекингом без добавки.

VETEROTODOTH	Содержание, % относительно суммы идентифицированных соединений					
углеводороды	исходная нефть	после крекинга	после крекинга в присут- ствии бутилбромида			
Алифатические УВ						
<i>н</i> -Алканы (<i>m</i> / <i>z</i> 57)	Не определено	23.3	30.4			
Изопреноиды (<i>m</i> / <i>z</i> 57 +183)	32.4	23.7	22.2			
Циклопентаны (<i>m</i> / <i>z</i> 69 + 70)	6.0	4.7	2.5			
Циклогексаны (<i>m</i> / <i>z</i> 82 + 83)	6.3	4.4	2.5			
Бицикланы (<i>m</i> / <i>z</i> 123)	0.6	0.6	0.1			
Трицикланы (<i>m</i> / <i>z</i> 191)	1.3	0.5	Не определено			
Тетрацикланы (<i>m</i> / <i>z</i> 217 + 218)	1.0	0.5	То же			
Пентацикланы (<i>m</i> / <i>z</i> 191 + 177)	5.3	2.6	"			
Нафтеноароматические УВ						
Нафтеномоноарены (<i>m</i> / <i>z</i> 145, 159, 253)	5.9	4.3	4.1			
Нафтобиарены (<i>m</i> / <i>z</i> 165 + 179)	0.6	0.2	0.3			
Нафтенотриарены (<i>m</i> / <i>z</i> 231)	1.5	0.5	0.3			
Алкилароматические УВ						
Моноарены (<i>m</i> / <i>z</i> 105 + 119 + 133)	13.6	10.6	6.7			
Биарены (<i>m</i> / <i>z</i> 128 + 142 + 156 + 170 + 184)	4.8	4.8	9.8			
Триарены (<i>m</i> / <i>z</i> 178 + 192 + 206 + 220 + 234)	3.7	3.0	5.1			
Полиарены (<i>m</i> / <i>z</i> 202 + 216 + 228 + 252 + 276)	Не определено	Не определено	0.4			
Серосодержащие соединения						
Бензотиофены (<i>m</i> / <i>z</i> 82 + 83)	7.1	9.1	7.3			
Нафтобензотиофены (<i>m</i> / <i>z</i> 234 + 248)	0.6	0.6	0.6			
Дибензотиофены (<i>m</i> / <i>z</i> 184 + 198 + 212 + 226)	9.3	6.6	7.7			

Таблица 4. Содержание УВ и СС в маслах кармальской нефти и продуктах ее крекинга

Таблица 5. Значения расчетных параметров по составу УВ

Параметр	Исходная нефть	Крекинг без добавки	Крекинг в присутствии бутилбромида
Нм/вм – <i>н</i> -алканы*	Не определено	1.1	1.5
Нм/вм – изопреноиды**	0.2	0.3	0.8

*Нм/вм — суммарное содержание *н*-алканов $\Sigma C_9 - C_{20} / \Sigma C_{21} - C_{34}$. **Нм/вм — суммарное содержание изопреноидов $\Sigma C_{13} - C_{16} / \Sigma C_{18} - C_{21}$.

Крекирующее влияние бутилбромида сказывается на составе изопреноидов термолизата — значительно увеличивается содержание низкомолекулярных гомологов C_{13} — C_{16} по сравнению с исходной нефтью (табл. 5). Наряду с этим уменьшается содержание моно- (циклогексанов, циклопентанов) и бицикланов. Отличительной особенностью состава циклических насыщенных УВ продуктов крекинга с бутилбромидом является отсутствие в их составе три-, тетра- и пентацикланов (табл. 4).

Наиболее существенные изменения среди ароматических УВ при крекинге в присутствии бутилбромида происходят в составе алкилбензолов. Если в исходной нефти моноарены представлены триметилалкилбензолами $C_{13}-C_{21}$, то в термолизате с бутилбромидом идентифицированы только метил- и этилбензолы состава C_8-C_{10} . Этот факт согласуется с данными работ [9], в которых показано, что термическая стабильность алкилароматических соединений зависит от их строения: числа ароматических колец и длины боковой цепи. Основным направлением превращения алкилзамещенных ароматических углеводородов являются крекинг алкильных цепей и деалкилирование.

Увеличение содержания алкилзамещенных би- и триаренов в термолизате с бутилбромидом, возможно, связано с деструкцией нафтеноаренов, которые могут крекироваться с образованием водорода, углеводородных газов, бензола, толуола, ксилолов, нафталина и более тяжелых соединений, либо за счет генерации в качестве вторичных продуктов при крекинге нафтеноаренов и циклических насыщенных УВ [9]. Как видно из табл. 4, крекинг в присутствии добавки приводит к уменьшению содержания нафтеномоноаренов (тетралинов (m/z 145 + 159), моноароматических стероидов (m/z 253), нафтенобиаренов (дегидроантраценов, флуоренов (m/z 165 + 179) и особенно нафтенотриаренов (триароматических стероидов (m/z 231)). В то же время присутствие бутилбромида способствует ускорению реакций конденсации, что приводит к образованию полициклических ароматических УВ ряда флуорантена, пирена, хризена, которые не были идентифицированы в термолизате без добавки.

Крекинг в присутствии бутилбромида приводит к некоторому увеличению содержания дибензотиофенов по сравнению с крекингом без добавки. Количество бензотиофенов при крекинге в присутствии бутилбромида сохраняется практически на уровне исходной нефти.

ЗАКЛЮЧЕНИЕ

Изучен крекинг тяжелой нефти в присутствии различного количества бутилбромида. Установлено оптимальное количество бутилбромида (0.71 мас. %), которое позволяет увеличить выход светлых фракций на 30% и деструкцию смол и асфальтенов на 17.6 мас. %. Показано, что добавка бутилбромида способствует удалению 28 отн. % серы в виде твердых и газообразных продуктов. Установлено, что более 90% брома концентрируется в продуктах уплотнения, а бутильный радикал образует бутан в составе газообразных продуктов.

При детальном исследовании углеводородного состава методом хромато-масс-спектрометрии, продуктов крекинга показано, что бутилбромид способствует изменению направленности термических превращений. Отмечается увеличение содержания *н*-алканов и изопреноидов, в том числе и низкомолекулярных, а также би- и триаренов. Наблюдаются уменьшение содержания циклогексанов и циклопентанов и полная деструкция три-, тетра- и пентациклических насыщенных углеводородов по сравнению с исходной нефтью. Это может быть обусловлено не только деструкцией высокомолекулярных углеводородов, но и отрывом алифатических заместителей молекул асфальтенов и смол.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Минобрнауки РФ (НИОКТР 121031200185-6).

СПИСОК ЛИТЕРАТУРЫ

- Haльеиева X.B., Копытов М.А. // XTT. 2022. № 2. C. 34. [Nal'gieva Kh.V., Kopytov M.A. // Solid Fuel Chem. 2022. vol. 56. № 2. P. 116. https://doi.org/10.3103/S0361521922020070] https://doi.org/10.31857/S0023117722020074
- Mukhamatdinov I.I., Khaidarova A.R., Mukhamatdinova R.E., Affane B., Vakhin. A.V. // Fuel. 2022. V. 312. P. 123005. https://doi.org/10.1016/j.fuel.2021.123005
- 3. Уразов Х.Х., Свириденко Н.Н. // ХТТ. 2022. № 2. C. 46. [Urazov K.K., Sviridenko N.N. // Solid Fuel Chem. 2022. vol. 56. № 2. Р. 128. https://doi.org/10.3103/S0361521922020100] https://doi.org/10.31857/S0023117722020104
- Гончаров А.В., Кривцов Е.Б. // Нефтехимия. 2021. T. 61. № 5. С. 704. [Goncharov A.V., Krivtsov E.B. // Pet. Chem. 2021. vol. 61. № 9. Р. 1071. https://doi.org/10.1134/S0965544121090061] https://doi.org/10.31857/S0028242121050130

- Prado Glaucia H.C., de Klerk A. // Energy Fuels. 2014.
 V. 28. P. 4458. https://doi.org/10.1021/acs.energyfuels.7b02004
- Alemán-Vázquez L.O., Cano-Domínguez J.L., García-Gutiérrez J.L. // Procedia Eng. 2012. V. 42. P. 532. https://doi.org/10.1016/j.proeng.2012.07.445
- 7. Певнева Г.С., Воронецкая Н.Г., Свириденко Н.Н., Головко А.К. // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 45. [Pevneva G.S., Voronetskaya N.G., Sviridenko N.N., Golovko A.K. // Chemistry for Sustainable Development. 2019. № 1. Р. 36.

https://doi.org/10.15372/CSD20190107] https://doi.org/10.15372/KhUR20190107

- Darouich T.Al., Behar F., Largeau C. // Organic Geochemistry. 2006. V. 37. P. 1130.
- Гордадзе Г.Н., Гируц М.В., Кошелев В.Н., Юсупова Т.Н. // Нефтехимия. 2015. Т. 55. № 1. С. 25. [Gordadze G.N., Giruts M.V., Koshelev V.N., Yusupova T.N. // Pet. Chem. 2015. vol. 55. № 1. Р. 22. https://doi.org/10.1134/S0965544115010053] https://doi.org/10.7868/S0028242115010050.