УДК 622.276.8

ВЛИЯНИЕ КИСЛОТНЫХ РЕАГЕНТОВ НА ФОРМИРОВАНИЕ НЕФТЯНОГО ОСАДКА

© 2023 г. И. В. Прозорова^{1,*}, Н. В. Юдина^{1,**}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия

*e-mail: piv@ipc.tsc.ru **e-mail: natal@ipc.tsc.ru Поступила в редакцию 27.10.2022 г. После доработки 14.11.2022 г. Принята к публикации 07.12.2022 г.

Исследовано формирование нефтяного осадка в высокопарафинистой нефти в присутствии карбоновых и нафтеновых кислот. Показано влияние концентрации и состава кислот на процесс ингибирования осадка и содержание в нем парафинов, смол и асфальтенов. В составе осадков, полученных из нефти с добавками кислотных реагентов, повышается количество легких *н*-алканов и снижается доля более высокомолекулярных углеводородов. В составе смол осадков, полученных с добавками кислотных реагентов, снижается содержание алифатических фрагментов и карбоксильных групп и возрастает коэффициент ароматичности. Асфальтены в осадке характеризуются снижением содержания ароматических структур и карбоксильных групп.

Ключевые слова: высокопарафинистая нефть, осадок, карбоновые кислоты, концентрат нафтеновых кислот, н-алканы, смолы, асфальтены

DOI: 10.31857/S0023117723020123, EDN: BPPMVI

введение

Отложение твердой фазы на поверхности нефтепромыслового оборудования при добыче, транспортировке и хранении сырой нефти приводит к техническим проблемам и экономическим потерям для нефтегазовой промышленности. Количество и состав нефтяных осадков определяются дисперсионной средой, дисперсной фазой нефти и внешними условиями. Термодинамическое равновесие между высокомолекулярными компонентами, такими как асфальтены, смолы и парафины, является важным параметром стабильности сырой нефти. Как только равновесие нарушается из-за изменений температуры, давления и состава нефти, уменьшается растворимость высокомолекулярных парафинов. Это приводит к снижению температуры их появления и отложения на твердых поверхностях [1]. Стабилизация начальной стадии роста субмикронных кристаллов парафинов может быть связана с адсорбшией асфальтенов на их поверхности [2]. Формирование молекулярных комплексов "асфальтены-парафины" происходит за счет межмолекулярных взаимодействий. В работе [3] объясняют присутствие асфальтенов в осадках следствием окклюзии нефтяного флюида кристаллизующейся фазой парафинов. Содержание асфальтенов в отложении постоянно увеличивается с течением времени и в конечном итоге достигает в несколько раз большего, чем в исходной нефти. Асфальтены, захваченные отложениями, имеют более высокую полярность и молекулярную массу, чем асфальтены, первоначально присутствующие в нефти [4].

Одним из способов предотвращения интенсивного осадкообразования в нефти является применение ингибирующих присадок. Ингибиторами выступают поверхностно-активные вещества с алкильной цепью и полярной головкой; органические кислоты с кислотной группой, присоединенной к ароматическому кольцу; карбоновые кислоты. Механизм действия ингибиторов в ряде работ рассматривают с точки зрения их влияния на кристаллизацию парафинов [5]. Депрессорно-модифицирующие присадки приводят к концентрированию в осадке высокомолекулярных парафинов, более полярных смолистых компонентов и асфальтенов.

Ингибиторы могут также стабилизировать асфальтены, взаимодействуя с ними, снижая столкновения молекул и предотвращая агрегацию. Некоторые авторы [6, 7] считают, что диспергированные асфальтеновые агрегаты не всегда могут снизить их осаждение.

В последние годы появились работы, например [8–10], свидетельствующие о совместном дей-

Рис. 1. ИК-спектр концентрата нафтеновых кислот.

ствии ингибиторов парафинов и асфальтенов на процесс осадкообразования, при котором изменяются характер кристаллизации парафина и морфология кристаллов. Наиболее эффективные ингибиторы уменьшали средний размер агрегированных асфальтенов на 58%, что связано с наличием в составе ингибиторов ароматических веществ и полярных кислотных и/или спиртовых функциональных групп. Благодаря кислотно-щелочным взаимодействиям происходит уменьшение размеров агрегатов асфальтенов.

Цель работы — исследование влияния кислотных реагентов на формирования осадков в высокопарафинистой нефти.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования являлась высокопарафинистая нефть Останинского месторождения. Физико-химическая характеристика: плотность – 867 кг/м³, температура застывания +7°С, содержание парафинов 8.5 мас. %, смолисто-асфальтеновых веществ 14.9 мас. %.

В качестве кислотных реагентов использовали карбоновые кислоты лауриновую $C_{12}H_{24}O_2$, миристиновую $C_{14}H_{28}O_2$, пентадекановую $C_{15}H_{30}O_2$, стеариновую кислоты $C_{18}H_{36}O_2$ (ч., производитель Китай) в концентрации 0.03 мас. %. Концентрат нафтеновых кислот (КНК), полученный из нефти двухступенчатой экстракцией водно-спиртовым раствором едкого натра, вводили в концентрации 0.01, 0.02, 0.03, 0.04. Характеристика ККН: ММ – 280 у.е., кислотное число – 84.8 мг КОН/г, структурная формула $C_nH_{2n-2}O_2$, где n - 15-20.

В ИК-спектре концентрата нафтеновых кислот (рис. 1) характеристические полосы соответствуют структурным группам: 1700 см⁻¹ (С=О-группа); 1460–1470 см⁻¹ и 1370–1380 см⁻¹ (колебания С–Н-связи в метиленовых и метильных группах); 940 см⁻¹ (широкая полоса деформационных колебаний –СН₂ в нафтеновых циклах); 1292 см⁻¹ (–С–О); 3500–3000 см⁻¹ (связанная – ОН-группа). Полосы поглощения с максимумами 2853 и 2954 см⁻¹ соответствуют валентным колебаниям С–Н-связей метильных и метиленовых групп.

Количественную оценку процесса осадкообразования осуществляли на лабораторной установке методом холодного стержня. Установка состоит из термостатированного стального цилиндра, погруженного в герметичный термостатированный сосуд, содержащий исследуемый образец. Температурный режим процесса формирования отложений подбирался с учетом температуры застывания анализируемого образца. В ходе эксперимента анализируемого образца. В ходе эксперимента анализируемую пробу в герметичном стакане термостатировали 1 ч при температуре 25°С, температура стального стержня — 12°С. Количество осадка на стержне определялось гравиметрически.

Содержание асфальтенов, смол в нефтях и нефтяных осадках определяли методом адсорбционной хроматографии на оксиде алюминия согласно *ASTM D*2007, парафиновых углеводородов (Π) — по *ASTM E*1519.

Анализ состава масляной фракции в нефтяном осадке выполнялся на хромато-масс-спектрометрическом комплексе *Trace* 1310/TSQ 8000 EVO

Реагент	Количество осадка, мас. %	Содержание, мас. % на осадок		
		масла	смолы	асфальтены
Без реагента	33.0	28.9	3.2	1.1
0.03% C ₁₂ H ₂₄ O	31.0	26.9	3.0	0.9
$0.03\%\ C_{14}H_{28}O_2$	29.5	25.7	3.0	0.9
$0.03\% C_{15}H_{30}O_2$	22.5	18.8	3.0	0.6
$0.03\% C_{18}H_{36}O_2$	18.1	14.7	3.0	0.5
0.01% KHK	28.0	24.3	2.7	0.9
0.02% KHK	26.1	22.7	2.6	0.8
0.03% KHK	18.5	14.5	3.4	0.6
0.04% KHK	21.8	18.5	2.6	0.7

Таблица 1. Влияние структурных характеристик и концентрации карбоновых кислот и КНК на ингибирование нефтяного осадка

(*Thermo Fisher Scientific, США*). Условия: кварцевая капиллярная колонка TG-5MS с неподвижной фазой на основе 5% дифенил / 95% диметилполисилоксан, температура испарителя — 310°С, температура трансферной линии к масс-спектрометру — 300°С; программа термостатирования колонки — от 60 до 310°С со скоростью 4°С/мин, выдержка конечной температуры 40 мин. Массхроматограммы регистрировались по общему ионному току (TIC) в диапазоне масс от 45 до 550 а.е.м.

Регистрацию ИК-спектров асфальтенов и смол проводили на ИК-Фурье-спектрометре Nicolet-5700 в таблетках КВг в соотношении 1: 300. По результатам ИК-спектроскопии рассчитаны спектральные коэффициенты для асфальтенов, представляющие собой нормированные оптические плотности полос поглощения: D_{1610}/D_{1465} – содержание ароматических структур, D_{725}/D_{1465} – содержание парафиновых структур, D_{725}/D_{1380} – содержание длинных парафиновых цепей, D_{1380}/D_{1465} разветвленности коэффициент (содержание СН₃-групп), D_{1710}/D_{1465} – условное содержание – С=О, условное содержание нафтеновых структур D_{970}/D_{1465} , коэффициент ароматизированности D_{1610}/D_{725} , коэффициент алифатичности $D_{720+1380}/D_{1600}$.

Микрофотографии масляной фракции нефтяных осадков получены на микроскопе серии *Axio Lab.A1 (Carl Zeiss)* в проходящем свете. Обработку фотографий проводили с помощью программы *Axio Vision Zeiss*.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Количество нефтяного осадка в нефти при добавлении насыщенных карбоновых кислот снижается с увеличением длины углеводородной цепи, достигая ингибирования образования осадка на 45% с добавкой стеариновой кислоты на (табл. 1). Эффективность ингибирования образования осадка при введении в нефть КНК зависит от его концентрации. Максимальное снижение количества осадка на 44.4% наблюдается при добавке 0.03% КНК. Дальнейшее повышение концентрации КНК до 0.04% приводит к увеличению количества осадка, что может происходить за счет самоагрегации молекул в КНК.

В табл. 1 приведены результаты по влиянию кислотных реагентов на групповой состав осадков. Количество осадка в нефти при добавках карбоновых кислот снижается за счет уменьшения количества масляной фракции и асфальтенов. В наибольшей степени ингибирующую эффективность (в 2 раза) проявляет стеариновая кислота.

Введение в нефть КНК оказывает влияние на содержание всех фракций в нефтяных осадках. В образце с добавкой 0.03% КНК, характеризующемся максимальной ингибирующей способностью, снижается содержание масел и асфальтенов, но возрастает количество смол (табл. 1).

Методом хромато-масс-спектрометрии определен индивидуальный состав н-алканов в масляной фракции. На рис. 2 приведено молекулярномассовое распределение (ММР) н-алканов в осадках. Для н-алканов масляной фракции, выделенной из осадков исходной нефти и с добавками стеариновой кислоты и КНК, наблюдается бимодальное ММР. В ММР н-алканов в нефтяном осадке, полученном без реагента, максимумы приходятся на С11 и С25. В осадках, выделенных из нефти с добавками 0.03% стеариновой кислоты и 0.03% КНК, максимумы в ММР алканов смещаются на С₁₃ и С₂₃. В составе парафиновых углеводородов в осадках повышается доля н-алканов $C_{10}-C_{20}$ и снижается – $C_{21}-C_{30}$ по сравнению с алканами из осадка, полученного без реагентов.

Рис. 2. Молекулярно-массовое распределение *н*-алканов в масляной фракции осадков: 1 - 6ез реагентов; 2 - 0.03% C₁₈H₃₆O₂; 3 - 0.03% KHK.

По данным спектральных коэффициентов, приведенных в табл. 2, в масляных фракциях осадков, выделенных из нефти с добавками карбоновых кислот, повышается степень алифатичности $D_{720 + 1380}/D_{1600}$, коэффициент разветвленности алифатических цепей D_{1380}/D_{1465} и снижается условное содержание нафтеновых D_{970}/D_{1465} и ароматических структур D_{1600}/D_{1465} . Для масляных фракций в осадках, выделенных из нефти с добавками КНК, отмечается более существенное повышение степени алифатичности, снижение условного содержания нафтеновых и ароматических структур.

Анализ микрофотографий масляной фракции осадка, полученного без реагента, показал фор-

Таблица 2. Влияние кислотных реагентов на спектральные коэффициенты для масляной фракции осадков (по данным ИК-спектроскопии)

	Нормирование полос поглощения			
Реагент	$D_{720 + 1380}/$	D ₁₆₁₀ /	$D_{970}/$	$D_{1380}/$
	<i>D</i> ₁₆₁₀	<i>D</i> ₁₄₆₅	<i>D</i> ₁₄₆₅	<i>D</i> ₁₄₆₅
Без реагента	9.27	0.08	0.15	0.38
$0.03\% C_{12}H_{24}O$	11.8	0.07	0.09	0.55
$0.03\% \ C_{14} H_{28} O_2$	11.8	0.06	0.08	0.56
$0.03\%\ C_{15}H_{30}O_2$	11.6	0.07	0.09	0.57
$0.03\%\ C_{18}H_{36}O_2$	11.0	0.06	0.08	0.61
0.01% KHK	13.5	0.05	0.06	0.50
0.02% KHK	15.4	0.04	0.06	0.49
0.03% KHK	16.0	0.04	0.06	0.48
0.04% KHK	14.5	0.05	0.06	0.48

мирование сплошной кристаллической структуры по всему объему с длиной парафиновых углеводородов от 23 до 45 мкм (рис. 3,а). Добавление в нефтяную систему карбоновых кислот приводит к снижению в масляной фракции скоплений и размеров парафиновых углеводородов (от 24 до 38 мкм), увеличению доли дендридных структур (рис. 3,6).

На микрофотографиях масляной фракции осадков, полученных с добавками КНК, видны отличия при формировании кристаллических парафиновых структур, по сравнению с добавками карбоновых кислот. Наиболее заметное уменьшение количества и размера структур парафиновых углеводородов наблюдается при добавлении к нефтяной системе 0.03 мас. % КНК. При этом не наблюдается образование дендритных структур (рис. 3,в).

Формирование стабильных зародышей кристаллов парафина происходит за счет достаточно гибких молекул, которые при охлаждении будут располагаться параллельно друг другу. Карбоновые кислоты длинными углеводородными цепями встраиваются в эти образования, а полярными функциональными группами препятствуют дальнейшему росту кристаллов.

Циклопарафины в составе КНК имеют жесткую и объемную структуру, они нарушают или вообще останавливают процессы зародышеобразования и роста кристаллов. Кристаллы, формируемые с участием циклопарафинов, являются наименее стабильными.

Использование данных ИК-спектроскопии позволяет получить информацию о структурногрупповом составе молекул нефтяных смол, выделенных из осадков. Согласно значениям спектральных коэффициентов, представленных в табл. 3, состав смол, полученных с добавками кислотных реагентов, характеризуется более низкими значениями степени алифатичности ($D_{720 + 1380}/D_{1610}$) и высокими – коэффициента ароматичности Баттачариа (D_{1610}/D_{725}) по сравнению со смолами из исходного осадка.

При увеличении количества атомов углерода в карбоновых кислотах, добавленных в нефть, в составе смол осадков, снижаются коэффициент ароматичности и содержание карбоксильных групп (D_{1710}/D_{1465}). Наиболее значимые изменения этих коэффициентов отмечаются в образцах, полученных с добавками 0.03% стеариновой кислоты и КНК. Коэффициент разветвленности (D_{1380}/D_{1465}), характеризующий условное содержание СН₃-групп, не изменяется по сравнению с этим коэффициентом для смол исходного осадка.

Характеристика структурно-группового состава молекул асфальтенов, выделенных из осадков с добавками КНК, дана на основании спектраль-

Рис. 3. Микрофотографии масляной фракции осадков: без реагента (а); 0.03% C₁₈H₃₆O₂ (б); 0.03% КНК (в).

ных коэффициентов, представленных в табл. 4. В асфальтенах снижаются коэффициент ароматичности, содержание ароматических и карбонилсодержащих структур по сравнению с асфальтенами исходного осадка. Максимальное изменеланных спектральных коэффициентов ние наблюдается в образцах из осадка с добавкой 0.03% КНК. Содержание парафиновых структур D_{725}/D_{1465} , соотношение длинных –CH₂– и CH₃ D_{720}/D_{1380} , коэффициент разветвленности D_{1380}/D_{1465} остаются постоянными в асфальтенах осадков. Следовательно, в нефтяном осадке с добавкой 0.03% КНК концентрируются асфальтены, содержащие меньше ароматических структур и карбоксильных групп.

ЗАКЛЮЧЕНИЕ

1. Ингибирующая способность кислотных реагентов проявляется при концентрации 0.03% кар-

Таблица 3. Влияние кислотных реагентов на спектральные коэффициенты смолистых компонентов в осадках (по данным ИК-спектроскопии)

	Нормирование полос поглощения			
Реагент	$\frac{D_{720 + 1380}}{D_{1610}}$	$D_{1610}/$ D_{725}	$D_{1710}/$ D_{1465}	$D_{1380}/$ D_{1465}
Без реагента	3.63	1.44	0.24	0.62
$0.03\% \ C_{12} H_{24} O$	3.28	1.75	0.25	0.63
$0.03\%\ C_{14}H_{28}O_2$	3.24	1.72	0.23	0.61
$0.03\%\ C_{15}H_{30}O_2$	3.22	1.73	0.22	0.60
$0.03\%\ C_{18}H_{36}O_2$	3.19	1.55	0.20	0.59
0.01% KHK	3.24	1.72	0.24	0.63
0.02% KHK	3.23	1.75	0.23	0.65
0.03% KHK	3.33	1.59	0.20	0.64
0.04% KHK	3.24	1.73	0.24	0.65

боновых кислот с длиной углеводородной цепи не менее 18 атомов углерода и концентрата нафтеновых кислот. В нефтяном осадке снижается доля масляной фракции и асфальтенов.

2. В составе масляных фракций осадков, полученных из нефти с добавками кислотных реагентов, повышается количество *н*-алканов состава $C_{10}-C_{20}$ и снижается – $C_{21}-C_{31}$ по сравнению с масляной фракцией исходного осадка. Анализ микрофотографий масляной фракции осадков свидетельствует о формировании в присутствии 0.03 мас. % стеариновой кислоты дендритных структур, а в присутствии 0.03 мас. % КНК – заметное уменьшение количества и размера кристаллов парафинов.

3. В составе смол осадков, полученных с добавками стеариновой кислоты и КНК в количестве 0.03 мас. %, снижается содержание алифатических фрагментов и карбоксильных групп и возрастает коэффициент ароматичности по сравнению со смолами исходного осадка.

4. Асфальтены в осадке, полученном с добавками 0.03% КНК, характеризуются снижением содержания ароматических структур и карбоксильных групп.

Таблица 4. Влияние концентрации КНК на спектральные коэффициенты асфальтенов в осадках (по данным ИК-спектроскопии)

Pegraut	Нормирование полос поглощения			
Гсагент	D_{1610}/D_{725}	D_{1610}/D_{1465}	D_{1710}/D_{1465}	
Без реагента	1.98	0.81	0.64	
0.01% KHK	1.95	0.79	0.62	
0.02% KHK	1.94	0.78	0.60	
0.03% KHK	1.63	0.72	0.52	
0.04% KHK	1.82	0.78	0.60	

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Минобрнауки РФ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zahedi-Nejad, Bahrami M., Torkaman M., Ghayyem M. // J. Petrol. Sci. Eng. 2021. V. 205. № 10. P. 108858. https://doi.org/10.1016/j.petrol.2021.108858
- Daniel Molina V., Emiliano Ariza León, Arlex Chaves-Guerrero // Energy Fuels. 2017. V. 31. № 9. P. 8997. https://doi.org/10.1021/acs.energyfuels.7b01149
- Sun W., Wang W, Gu Y., Xu X., Gong J. // Fuel. 2017. V. 191. P. 106. https://doi.org/10.1016/j.fuel.2016.11.063
- Wattana P., Fogler H.S., Yen A. // Energy Fuels. 2005. V.19. № 1. P. 101. https://doi.org/10.1021/ef0499372
- Jung T., Kim J-N., Kang P-S. // Korean J. Chem. Eng. 2016. V. 33. P. 1813. https://doi.org/10.1007/s11814-016-0052-3

- Hosseini-Moghadam S.M.-A., Zahedi-Nejad A., Bahrami M., Torkaman M., Ghayyem M.-A. // Petrol. Sci. Eng. 2021. V. 205. № 10. P. 108858. https://doi.org/10.1016/j.petrol.2021.108858
- Ghloum E.F., Rashed A.M., Safa M.A., Sablit R.C., Al-Jouhar S.M. // Petrol. Sci. Eng. 2019. V. 175. № 4. P. 495. https://doi.org/10.1016/j.petrol.2018.12.071
- Faraoun Abbassia, Mortada Daaou, Bounaceur Boumediene // Energy Sources. 2016. Part A: Recovery, Utilization and Environmental Effects. V. 38. № 19. P. 2830. https://doi.org/10.1080/15567036.2015.1017671
- Yang F., Zhu H., Li C., Yao B. // Petrol. Sci. Eng. 2021. V. 204. № 7. P. 108723. https://doi.org/10.1016/j.petrol.2021.108723
- Razipour M., Samipour Giri M., Majidian N. // Energy Sources. Part A: Recovery. Util. Environ. Effects. 2020. V. 17. № 4. P. 1. https://doi.org/10.1080/15567036.2020.1752332