УДК 665.642:66.092-977

ИЗМЕНЕНИЕ СТРУКТУРЫ МОЛЕКУЛ АСФАЛЬТЕНОВ В ПРОЦЕССЕ ИНИЦИИРОВАННОГО КРЕКИНГА ГУДРОНОВ

© 2023 г. А. В. Гончаров^{1,*}, Е. Б. Кривцов^{1,**}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия *e-mail: mad111-2011@mail.ru

> ***e-mail: john@ipc.tsc.ru* Поступила в редакцию 28.10.2022 г. После доработки 17.11.2022 г. Принята к публикации 07.12.2022 г.

Представлены результаты исследования асфальтенов, выделенных из жидких продуктов крекинга гудронов при температуре 500°С в присутствии добавки дидодеканоил пероксида. Рассчитаны константы скоростей реакций термических превращений асфальтенов исследуемых гудронов. Показано, что скорость реакций конденсации асфальтенов в твердые продукты уплотнения зависит не только от их исходного содержания в гудронах, но и от строения молекул. Установлены изменения структурно-групповых параметров асфальтенов гудронов в процессе инициированного крекинга. Показано, что отличительной особенностью крекинга асфальтенов в присутствии дидодеканоил пероксида является деструкция структурных блоков без изменения их количества в составе молекул. За счет деструкции алифатических заместителей и нафтеновых колец усредненные молекулы асфальтенов становятся более компактными, значительно увеличивается доля сконденсированных ароматических структур в их составе.

Ключевые слова: крекинг, гудрон, дидодеканоил пероксид, асфальтены, константа скорости, структурно-групповые параметры

DOI: 10.31857/S0023117723020056, EDN: BFDZSN

введение

В настоящее время в связи с повышением спроса на моторное топливо увеличение глубины переработки нефти является важной задачей мировой промышленности, в том числе и в России. Основным решением данного вопроса является вовлечение в нефтепереработку тяжелых вакуумных остатков, так как количество данного сырья достигает практически 50% от общего объема продуктов нефтеперерабатывающих заводов. Переработка вакуумных остатков основными промышленными процессами (висбрекинг, коксование, получение нефтяных битумов и т.д.) приводит к появлению ряда проблем, связанных с высоким содержанием в них высокомолекулярных компонентов (смолы и асфальтены) [1, 2]. Это, в свою очередь, обуславливает необходимость разработки дополнительных методов облагораживания гудронов, которые позволят получать дополнительные количества легких и средних фракций. Асфальтены, являясь одним из самых сложных компонентов тяжелых нефтяных фракций, имеют большую молекулярную массу и состоят из различных ароматических углеводородов с высоким содержанием гетероциклических и гетероатомных соединений [3]. Кроме того, асфальтены, содержащиеся в значительных количествах в гудронах, являются причиной образования кокса и дезактивации дорогостоящих каталитических систем, применяемых в переработке. Коксоподобный продукт откладывается в змеевиках печи, колонне фракционирования и для удаления его из оборудования часто требуется химическая или механическая обработка, что значительно повышает эксплуатационные расходы. Таким образом, необходима разработка более эффективных методов переработки гудронов, а также изучение состава, структуры и свойств асфальтенов [4—6].

Одним из наиболее простых методов переработки вакуумных остатков является термический крекинг в присутствии радикал-образующих добавок, таких как органические пероксиды. Данные соединения способны разлагаться в широком диапазоне температур в зависимости от их структуры, с образованием свободных радикалов, что позволяет использовать их в качестве инициаторов реакций процесса крекинга. Низкая температура разложения органических пероксидов обусловлена наличием слабой пероксидной груп-

Показатель	ΗΓ	ОГ					
Элементный состав, мас. %							
Углерод 82.28 85.49							
Водород	10.73	10.99					
Сера	3.04	1.80					
Азот	0.19	0.56					
Кислород	3.76	1.16					
H/C	1.56	1.54					
Фракционный состав, мас. %							
Т _{н.к.}	343.0	500.0					
200-360	1.4	0.0					
>360	98.6	100.0					
Вещественный с	остав, мас. %	6					
Масла	60.7	65.8					
Смолы	33.6	33.1					
Асфальтены	5.7	1.1					
Молекулярная масса, а.е.м.							
Смолы	600	639					
Асфальтены	718	2142					
Коксуемость	13.59	14.02					
<i>Т</i> _{пл}	58.9	68.3					

Таблица 1. Физико-химические характеристики гудронов

пы –O–O–, которую содержат эти вещества. При крекинге гудронов радикал-образующие добавки способны генерировать свободные радикалы [7], тем самым способствуя инициированию радикально-цепных реакций крекинга углеводородов и смолисто-асфальтеновых компонентов, а также препятствуя конденсации их в твердые продукты.

Цель работы — установление концентрационных и кинетических закономерностей превращения асфальтенов в процессе крекинга высокосернистых вакуумных остатков в присутствии дидодеканоил пероксида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования и материалы. Объектами исследования являлись гудроны Новокуйбышевского НПЗ (НГ) и Омского НПЗ (ОГ). При нормальных и стандартных условиях исследуемые гудроны – твердые вещества. В составе гудронов содержится значительное количество смолисто-асфальтеновых компонентов: смол до 33.6, асфальтенов до 5.7 мас. %. Кроме того, высокое содержание серы и низкое атомное соотношение Н/С свидетельствуют о высокой доле ароматических структур в составе молекул основных компонентов (масла, смолы и асфальтены) гудронов и характеризуют их как неподходящее сырье для получения дистиллятных топлив (бензин, дизельное топливо). Основные физико-химические характеристики гудронов представлены в табл. 1.

В качестве добавки, инициирующей процесс крекинга, применялся дидодеканоил пероксид (ДДП) фирмы *Acros Organics, CAS number* 105-74-8, концентрация основного компонента – 99 мас. %.

Термический крекине гудронов проводили в реакторах закрытого типа, объем которых составлял 12 см³. Масса навески гудрона 7 г. Крекинг проводили в оптимальных условиях, которые были установлены в ранее проведенных исследованиях [8]: температура термообработки гудронов составляла 500°С, продолжительность для НГ – 30 мин, для ОГ – 45 мин. Количество добавки дидодеканоил пероксида составляло от 0.1 до 2.5 мас. % от массы навески объекта исследования.

Определение вещественного состава. Вещественный состав объектов исследования и продуктов их крекинга в присутствии добавки дидодеканоил пероксида определяли по стандартной методике. Содержание асфальтенов устанавливали путем разбавления образца *н*-гексаном в объемном соотношении 1:40, затем раствор выдерживали в течение 24 ч. Далее образованный осадок отфильтровывали и промывали *н*-гексаном от раствора мальтенов.

Содержание масел и смол в полученных мальтенах определяли адсорбционным способом, для чего анализируемый продукт помещали на активированный силикагель АСК в экстрактор Сокслета, затем последовательным элюированием смывали углеводородные компоненты (масла) *н*-гексаном и смолы — этанол-бензольной смесью в соотношении 1:1.

Определение фракционного состава жидких продуктов крекинга проводили методом газожид-костной хроматографии на хроматографе "*Кристалл-2000M*", оснащенном пламенно-ионизационным детектором (ПИД), кварцевой капиллярной колонкой длиной 25 м \times 0.22 мм со стационарной фазой *SE-54*. В качестве газа-носителя применялся гелий. Линейное повышение температуры составляло от 45 до 290°С, скорость нагрева термостата колонки – 15°С/мин. Разделение отрезков хроматограммы на бензиновую (н.к.–200) и дизельную (200–360°С) фракции проводили путем сравнения времени удерживания *н*-алканов (гексан и гексадекан), пристана и фитана.

Структурно-групповой анализ смолисто-асфальтеновых компонентов. Структурно-групповой анализ асфальтенов, выделенных из исходного гудрона и жидких продуктов его крекинга, проводили по методике, разработанной в Институте химии нефти СО РАН (Томск). Данная методика основывается на совместном использовании ре-

Vслорие	Содержание, мас. %											
условие	газ	жидкость	кокс	масла	смолы	асфальтены	н.к.–200°С	200–360°C				
Исходный	0.0	100.0	0.0	60.7	33.6	5.7	0.0	1.4				
Крекинг	19.7	75.1	5.2	56.7	13.5	4.9	27.9	23.4				
+ 0.1% ДДП	7.0	90.1	2.9	64.4	20.3	5.4	18.1	33.9				
+ 0.5% ДДП	6.5	89.8	3.7	66.4	17.2	6.2	18.7	33.3				
+ 1.0% ДДП	7.2	87.9	4.9	67.6	11.8	8.5	25.4	42.0				
+ 1.5% ДДП	8.7	86.3	5.0	68.3	10.7	7.3	19.5	33.3				
+ 2.5% ДДП	10.4	82.6	7.0	66.4	9.0	7.2	21.3	31.7				

Таблица 2. Состав продуктов крекинга гудрона Новокуйбышевского НПЗ с добавкой дидодеканоил пероксида (500°С, 30 мин)

Таблица 3. Состав продуктов крекинга гудрона Омского НПЗ с добавкой дидодеканоил пероксида (500°С, 45 мин)

	Содержание, мас. %											
Условие	газ	жидкость	кокс	масла	смолы	асфаль- тены	н.к.—200°С	200–360°C				
Исходный	0.0	100.0	0.0	64.9	34.0	1.1	0.0	0.0				
Крекинг	11.8	77.1	11.1	59.1	15.1	2.9	24.6	31.8				
+ 0.1% ДДП	7.9	90.1	2.0	57.1	20.1	12.9	27.0	29.3				
+ 0.5% ДДП	10.1	87.8	2.1	59.6	18.6	9.6	18.6	32.0				
+ 1.0% ДДП	12.1	83.9	4.0	58.6	17.8	7.5	23.0	33.1				
+ 1.5% ДДП	13.7	82.0	4.3	64.4	13.7	3.9	24.4	31.6				
+ 2.5% ДДП	14.1	81.3	4.6	66.4	11.2	3.7	22.3	30.6				

зультатов определения средней молекулярной массы, элементного состава, данных спектроскопии протонного магнитного резонанса. Содержание С, Н, N, S и O устанавливали с помощью элементного анализатора *Vario EL Cube* (Германия). Молекулярную массу асфальтенов измеряли методом криоскопии в нафталине на приборе *"Крион"*. Спектры ¹Н-ЯМР регистрировали с помощью Фурье-спектрометра *AVANCE III HD* (400 МГц) фирмы *Bruker* (Германия). В качестве растворителя применялся дейтерохлороформ, внутренний стандарт – гексаметилдисилоксан, концентрации исследуемых веществ 1%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ранее проведенной работе [8] были установлены оптимальные условия термической обработки гудронов Новокуйбышевского НПЗ и Омского НПЗ. Оптимальная температура крекинга для гудронов составляла 500°С, продолжительность термообработки для НГ – 30 мин, для ОГ – 45 мин. Было установлено, что крекинг гудронов способствует интенсивному протеканию реакций деструкции смол с образованием газообразных продуктов и конденсации асфальтенов в кокс.

Введение в реакционную зону добавки дидолеканоил пероксила в количестве 0.1 мас. % при крекинге гудрона Новокуйбышевского НПЗ (табл. 2) приводит к замедлению реакций конденсации по маршруту смолы \rightarrow асфальтены \rightarrow кокс, что в свою очередь позволяет увеличить выход жидких продуктов. Увеличение количества добавки ДДП способствует интенсификации реакции деструкции высокомолекулярных компонентов, что снижает доли смол и асфальтенов в продуктах крекинга гудрона практически в 3 раза и приводит к образованию компонентов, которые попадают в состав масел. Вероятно, это объясняется взаимодействием продуктов деструкции смол и асфальтенов с радикалами, образованными при разложении дидодеканоил пероксида, что позволяет замедлить протекание реакций конденсации компонентов гудрона в твердые продукты крекинга.

Применение радикал-образующей добавки при крекинге гудрона Омского НПЗ (табл. 3) способствует замедлению реакций уплотнения ас-

Схема 1. Формализованный механизм термических превращений компонентов гудрона.

10

фальтенов в твердые продукты крекинга (в сравнении с термокрекингом). Вероятно, это объясняется взаимодействием продуктов термического распада высокомолекулярных компонентов с радикалами, образованными при деструкции дидодеканоил пероксида, что позволяет снизить возможность протекания реакций конденсации компонентов гудрона. Увеличение количества добавки дидодеканоил пероксида способствует ускорению реакций крекинга компонентов смол и асфальтенов с образованием низкомолекулярных компонентов, которые попадают в состав масел. Кроме того, наблюдается деструкция смол и масел с образованием газообразных продуктов крекинга.

Согласно результатам определения фракционного состава, установлено, что применение добавки даже в небольших количествах (0.1–0.5 мас. %) позволяет увеличить выходы фракции н.к. – 360°С, вследствие деструкции компонентов смол с образованием дизельной фракции, в результате увеличивается суммарное содержание дистиллятных фракций в жидких продуктах крекинга гудронов. Увеличение количества добавки дидодеканоил пероксида до 1.0–1.5 мас. % позволяет дополнительно увеличить содержание фракции н.к. –200°С, за счет замедления реакций крекинга компонентов новообразованной бензиновой фракции, вследствие чего выход газообразных продуктов снижается.

Асфальтены являются основной причиной образования кокса, которое протекает через несколько последовательных стадий: конденсации смол с образованием вторичных асфальтенов, а также конденсации асфальтенов в кокс. При этом новообразованные асфальтены отличаются строением от исходных асфальтенов, что отражается на кинетике протекающих при термическом и инициированном крекинге реакций. Для установления влияния асфальтенов на кинетику реакций крекинга проведен расчет констант скоростей реакций крекинга компонентов гудронов. При расчете констант были сделаны предположения: в процессе термического крекинга тяжелого углеводородного сырья протекают параллельные, обратимые радикально-цепные реакции деструкции и конденсации его компонентов. При расчете констант скоростей реакций применялась методика, представленная в работе [9], а также формализованный механизм (схема 1), в котором учитываются все возможные реакции как исходных компонентов (масла, смолы, асфальтены), так и продуктов их деструкции [10]. В приведенной схеме маршруты k_2, k_3, k_4, k_6, k_8 и k₉ являются реакциями деструкции смол и асфальтенов с образованием низкомолекулярных соединений, маршруты k_1, k_5, k_7, k_{10} – реакции конденсации. На основе формализованного механизма протекания термических превращений компонентов составлена кинетическая модель:

$$dC_{ra3}/dt = k_3C_{Macna} + k_4C_{CMONI} + k_9C_{ac\phianьтены};$$

$$dC_{Macna}/dt = -k_1C_{Macna} + k_2C_{CMONI}$$

$$-k_3C_{Macna} - k_5C_{Macna} + k_6C_{ac\phianьтенi};$$

$$dC_{CMONI}/dt = k_1C_{Macna} - k_2C_{CMONI} - k_4C_{CMONI}$$

$$-k_7C_{CMONI} + k_8C_{ac\phianьтенi};$$

$$dC_{ac\phi anьтены}/dt = k_5 C_{масла} - k_6 C_{ac\phi anьтены} + k_7 C_{смолы};$$
$$-k_8 C_{ac\phi anьтены} - k_9 C_{ac\phi anьтены} - k_{10} C_{ac\phi anьтены}.$$
$$dC_{\kappa o \kappa c}/dt = k_{10} C_{ac\phi anьтены}.$$

Результаты расчета констант скоростей представлены в табл. 4. При крекинге гудрона Новокуйбышевского НПЗ наблюдаются большие значения констант скоростей реакции образования асфальтенов из смол (k_7) и уплотнения асфальтенов в коксоподобные продукты (k_{10}) . Однако

Объект	Константа скоростей, ×10 ⁻² мин ⁻¹										
	<i>k</i> ₁	<i>k</i> ₂	<i>k</i> ₃	k_4	<i>k</i> ₅	<i>k</i> ₆	<i>k</i> ₇	<i>k</i> ₈	<i>k</i> 9	<i>k</i> ₁₀	
Гудрон Новокуйбышевского НПЗ											
Крекинг	1.0	4.7	0.7	0.2	0.1	1.2	1.7	0.5	0.1	6.4	
+ ДДП	0.5	2.7	0.5	0.3	0.1	0.8	0.6	0.2	0.2	4.2	
Гудрон Омского НПЗ											
Крекинг	0.6	5.3	0.7	0.3	0.9	0.8	0.9	0.5	0.5	8.8	

+ ЛЛП

0.2 2.9 0.6 0.2 0.7 1.3 0.3 2.2 0.2 4.3

Таблица 4. Константы скоростей реакций термических превращений компонентов гудронов (500°С)

вклад асфальтенов в образование газообразных продуктов (k_9) мал. Значения констант (k_8) и (k_6) самые низкие среди всех гудронов, что можно объяснить высокой термостабильностью молекул асфальтенов. Крекинг в присутствии радикал-образующей добавки способствует замедлению реакций конденсации смол в асфальтены и далее в кокс, о чем свидетельствует снижение k_7 и k_{10} (в сравнении с термокрекингом), вероятно, это связано с взаимодействием продуктов деструкции высокомолекулярных компонентов гудрона с радикалами, образовавшимися при распаде добавки.

При крекинге гудрона Омского НПЗ относительно низкими константами скоростей реакций обладают следующие процессы: образование газообразных продуктов из масел и смол (k_3 и k_4), конденсации масел в смолы (k_1) . При этом, несмотря на низкое содержание асфальтенов в составе исходного гудрона, наблюдаются высокие значения констант скоростей реакций конденсации смол в асфальтены (k_7) и асфальтенов в кокс (k_{10}) , что, вероятно, объясняется высокой склонностью новообразованных асфальтенов к реакциям уплотнения в твердые продукты крекинга. Применение добавки дидодеканоил пероксида, так же как и в случае с гудроном Новокуйбышевского НПЗ, способствует замедлению реакций коксообразования, о чем свидетельствует снижение значений констант k_{10} . Кроме того, наблюдаются высокие значения k_6 и k_8 , что, вероятно, обусловлено протеканием реакций крекинга асфальтенов с образованием низкомолекулярных компонентов, при этом вклад асфальтенов в газообразование невысок (константа k₉ имеет небольшое значение).

Вероятно, полученные отличия в скоростях реакций термических превращений асфальтенов обусловлены различным исходным строением (как качественным составом основных структурных фрагментов, из которых построены молекулы, так и способом их комбинирования в усредненных молекулах). Для оценки изменений, происходящих в структуре усредненной молекулы асфальтенов как в термических, так и в инициированных процессах крекинга, был проведен расчет структурно-групповых параметров. Установлено, что усредненная молекула асфальтенов гудрона Новокуйбышевского НПЗ (табл. 5) имеет молекулярную массу 718 а.е.м., состоит из двух блоков с общим числом циклов 13 (5 – ароматические, 7 – нафтеновые). Углеродный каркас практически наполовину состоит из ароматических структур ($f_a = 46.48$). Крекинг гудрона Новокуйбышевского НПЗ в присутствии добавки дидодеканоил пероксида (0.1 мас. %) приводит к снижению молекулярной массы усредненной молекулы асфальтенов жидких продуктов с 718 до 634 а.е.м. Число циклов в структуре молекулы увеличивается до 14.4 за счет увеличения числа насыщенных колец. Снижается число атомов серы и азота в составе усредненной молекулы асфальтенов.

Увеличение массы добавки ДДП до оптимального количества (1.0 мас. %) приводит к снижению молекулярной массы асфальтенов до 432 а.е.м., увеличению доли атомов углерода в ароматических циклах ($f_a = 50.31\%$). Число структурных блоков изменяется несущественно, что указывает на термическую устойчивость молекул асфальтенов. Количество атомов углерода в алифатических фрагментах молекулы снижается до 0.79. Общее число циклов снизилось с 13.38 до 10.91 преимущественно за счет уменьшения количества ароматических структур в усредненной молекуле асфальтенов. Снижение числа ароматических циклов в совокупности со снижением числа атомов серы (1 атом серы приходится на 2 молекулы асфальтенов) в усредненной молекуле, вероятно, связано с отрывом серосодержащих структурных фрагментов асфальтенов.

Дальнейшее увеличение количества добавки дидодеканоил пероксида до 2.5 мас. % способствует дополнительному снижению молекулярной массы усредненной молекулы асфальтенов. Количество циклов в усредненной молекуле снижается на четыре (относительно асфальтенов исходного гудрона) за счет деструкции нафтеновых и ароматических фрагментов. Наблюдается снижение числа атомов азота и серы в усредненной молекуле асфальтенов в 2 раза.

Результаты расчета структурно-групповых параметров усредненной молекулы асфальтенов гудрона Омского НПЗ в процессе крекинга, а так-

ГОНЧАРОВ, КРИВЦОВ

Показатель		Условие									
Показатель		исходный	крекинг	0.1% ДДП	0.5% ДДП	1.0% ДДП	1.5% ДДП	2.5% ДДП			
Молекулярная масса	лекулярная масса а.е.м.		702	634	527	432	409	387			
Число атомов в средней	С	49.61	47.97	43.86	36.33	29.97	30.02	27.14			
молекуле	Н	50.86	40.04	35.66	29.75	24.39	25.16	22.58			
	Ν	0.89	0.49	0.76	0.63	0.52	0.50	0.46			
	S	1.11	1.00	0.93	0.77	0.58	0.60	0.56			
	0	1.47	2.68	1.96	1.72	1.37	1.26	0.89			
Число блоков в молекуле	<i>m</i> _a	2.03	2.25	2.03	1.82	1.59	1.65	1.55			
Кольцевой состав	Ko	13.38	12.55	14.40	12.11	10.91	9.65	9.28			
	K _a	5.59	7.38	5.84	4.71	3.49	3.93	3.36			
	К _{нас}	7.79	5.16	8.56	7.40	7.42	5.72	5.91			
Фактор ароматичности	$f_{\rm a}$	46.48	64.96	55.48	54.67	50.31	56.62	54.44			
Число углеродных атомов	Ca	23.06	29.72	24.33	19.86	15.08	17.00	14.77			
разного типа в средней	C _H	24.66	17.22	18.56	15.68	14.10	12.51	11.69			
Monekyne	C_{π}	1.89	1.03	0.97	0.79	0.79	0.51	0.67			
	C_{α}	7.86	7.86	7.40	6.52	5.41	5.33	4.89			
Степень замещенности ароматических ядер	σ _a	0.48	0.39	0.43	0.45	0.47	0.42	0.43			
H/C		1.03	0.83	0.81	0.82	0.81	0.84	0.83			

Таблица 5. Структурно-групповые параметры асфальтенов гудрона Новокуйбышевского НПЗ и продуктов крекинга (500°C, 30 мин)

Примечание. Величина C_a – углерод в ароматических циклах; C_H – углерод в нафтеновых кольцах; C_Π – углерод в алифатических фрагментах; C_α – число атомов углерода в α-положении к ароматическому кольцу. Количество колец: K_o – общее. K_a – ароматических. K_{наc} – насыщенных; *f_a* – доля атомов углерода в ароматических фрагментах.

же крекинга в присутствии дидодеканоил пероксида, представлены в табл. 6. Показано, что усредненная молекула асфальтенов исходного гудрона Омского НПЗ представляет собой крупную четырехблочную молекулу, состоящую из 31 нафтенового и 16 ароматических циклов, с молекулярной массой 2142 а.е.м. Атомное отношение H/C составляет всего 0.93, что является следствием высокого содержания колец и значительной их замещенности (σ_a). Также следует отметить значительное количество гетероатомов в составе усредненной молекулы: 7 атомов кислорода, 2 серы и 2 азота.

Крекинг в присутствии добавки дидодеканоил пероксида (0.1 мас. %) способствует деструкции молекул асфальтенов, о чем также свидетельствуют снижение числа структурных блоков и общее количество циклов в их составе, вследствие чего снижается молекулярная масса усредненной молекулы до 771 а.е.м. Число атомов углерода составляет 53, из них 38 атомов находятся в ароматических циклах, как результат, молекулы асфальтенов обладают высокой ароматичностью $(f_a = 71.46)$. Количество атомов азота и кислорода снижается практически в два раза. Уменьшение числа атомов серы в 5 раз (1 атом приходится на 2 молекулы), что в совокупности со снижением числа ароматических циклов (до 9), вероятно, можно объяснить деструкцией серосодержащих фрагментов структурных блоков молекул асфальтенов. Также снижается количество атомов углерода в алифатических заместителях (C_n).

Увеличение количества добавки дидодеканоил пероксида до 2.5 мас. % способствует снижению молекулярной массы асфальтенов в 5 раз относительно исходного значения, за счет снижения числа структурных блоков, а также количества ароматических и насыщенных циклов в их составе. Снижается содержание атомов азота и кислорода в усредненной молекуле асфальтенов. Степень замещенности ароматических ядер составляет (σ_a) 0.41. Значительное снижение содержания атомов серы в усредненной молекуле может свидетельствовать о деструкции серосодержащих структурных фрагментов асфальтенов. Существенные изменения в структуре молекулы

Показатель		Условие									
Показатель		исходный	крекинг	0.1% ДДП	0.5% ДДП	1.0% ДДП	1.5% ДДП	2.5% ДДП			
Молекулярная масса	а.е.м.	2142	569	771	658	647	498	435			
Число атомов в средней	С	150.83	40.16	53.54	46.37	46.00	35.45	31.27			
молекуле	Н	139.83	31.39	41.46	37.14	37.74	27.17	25.25			
	Ν	1.99	0.61	0.85	0.67	0.74	0.57	0.46			
	S	2.74	0.41	0.51	0.42	0.44	0.33	0.29			
	0	7.07	2.12	3.66	2.58	2.03	1.67	1.16			
Число блоков в молекуле	m _a	4.34	1.89	2.46	2.12	2.10	1.79	1.67			
Кольцевой состав	Ko	47.45	14.22	13.67	14.53	14.30	12.59	10.53			
	K _a	16.40	4.98	9.19	6.39	6.27	4.54	3.99			
	К _{нас}	31.05	9.24	4.48	8.14	8.03	8.05	6.54			
Фактор ароматичности	f _a	43.24	53.23	71.46	58.57	58.01	55.61	56.46			
Число углеродных атомов	Ca	65.22	21.38	38.26	27.16	26.69	19.72	17.68			
разного типа в средней молекуле	\mathbf{C}_{H}	80.31	18.30	14.74	18.28	18.28	15.05	12.98			
	C_{π}	5.31	0.48	0.54	0.93	1.04	0.69	0.60			
	C_{α}	21.84	7.17	9.11	7.73	7.64	3.25	5.45			
Степень замещенности ароматических ядер	σ_{a}	0.52	0.46	0.36	0.41	0.41	0.43	0.41			
H/C		0.93	0.78	0.77	0.80	0.82	0.77	0.81			

Таблица 6. Структурно-групповые параметры асфальтенов гудрона Омского НПЗ и продуктов крекинга (500°С, 45 мин)

Примечание. Величина C_a – углерод в ароматических циклах; C_H – углерод в нафтеновых кольцах; C_{Π} – углерод в алифатических фрагментах; C_{α} – число атомов углерода в α -положении к ароматическому кольцу. Количество колец: K_o – общее. K_a – ароматических. $K_{\text{наc}}$ – насыщенных; f_a – доля атомов углерода в ароматических фрагментах.

асфальтенов при крекинге ОГ в присутствии ДДП: деструкция структурных блоков, а также количества циклов в их составе, снижение числа атомов серы, вероятно, объясняются с низкой термической и химической стабильностью исходных асфальтенов гудрона Омского НПЗ (в сравнении с НГ).

ЗАКЛЮЧЕНИЕ

Проведен крекинг вакуумных остатков в присутствии различного количества радикал-образующей добавки (дидодеканоил пероксид). Установлено, что введение в реакционную зону ДДП способствует изменению материального баланса процесса крекинга гудронов, а также компонентного и фракционного состава получаемых продуктов. Показано, что крекинг гудронов в присутствии 0.1 мас. % дидодеканоил пероксида приводит к замедлению реакций конденсации асфальтенов в твердые продукты крекинга. Повышение массовой доли добавки до 2.5 мас. % способствует интенсификации реакций крекинга смол и асфальтенов с образованием низкомолекулярных компонентов, которые накапливаются в составе масел.

С использованием формализованной кинетической модели процесса крекинга рассчитаны константы скоростей реакций термических превращений асфальтенов исследуемых гудронов в присутствии радикал-образующей добавки. Показано, что при термическом крекинге гудронов наибольшими значениями обладают константы конденсации асфальтенов в твердые продукты (k_{10}) . Введение дидодеканоил пероксида при температуре крекинга 500°С приводит к снижению констант скоростей реакций конденсации по маршруту смолы \rightarrow асфальтены \rightarrow кокс (k_7, k_{10}), а также увеличиваются значения констант реакций крекинга асфальтенов (k_6, k_8), вследствие чего увеличивается содержание низкомолекулярных компонентов в составе жидких продуктов крекинга.

Исходя из результатов структурно-группового анализа установлено, что при термообработке гудронов значительно снижается молекулярная масса усредненной молекулы асфальтенов. Крекинг гудронов в присутствии дидодеканоил пероксида способствует деструкции структурных блоков в молекуле асфальтенов, при этом молекулы становятся более компактными, увеличивается ароматичность за счет снижения числа алифатических заместителей и нафтеновых колец в их составе.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания Института химии нефти СО РАН, финансируемого Минобрнауки РФ.

СПИСОК ЛИТЕРАТУРЫ

- Jansen T., Guerry D., Leclerc E., Ropars M., Lacroix M., Geantet C., Tayakout-Fayolle M. // Ind. Eng. Chem. Res. 2014. V. 53. P. 15852. https://doi.org/10.1021/ie502242f
- Billups W.E., Verma M., Brinson B.E., Vishnyakova E., Alemany L.B., Shammai M. Energy Fuels. 2019. V. 33. P. 8040. https://doi.org/10.1021/acs.energyfuels.9b01298
- 3. *Капустин В.М., Глаголева О.Ф.* // Нефтехимия. 2016. Т. 56. № 1. С. 3. [Petrol. Chemistry, 2016, vol. 56, no. 1, p. 1.

https://doi.org/10.1134/S0965544116010035]. https://doi.org/10.7868/S0028242116010032

- Akimov A.S., Sviridenko N.N. // J. Pet. Sci. Technol. 2022. V. 40. P. 980. https://doi.org/10.1080/10916466.2021.2008973
- Chen L., Meyer J., Campbell T., Canas J., Betancour S.S., Dumont H., Forsythe J.C., Mehay S., Kimball S., Hall D.L., Nighswander J., Peters K.E., Zuo J.Y., Mullins O.C. // Fuel. 2018. V. 221. P. 216. https://doi.org/10.1016/j.fuel.2018.02.065
- Alimohammadi S., Zendehboudi S., James L. // Fuel. 2019. V. 252. P. 753. https://doi.org/10.1016/j.fuel.2019.03.016
- 7. *Кривцов Е.Б., Головко А.К.* // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 31. https://doi.org/10.15372/KhUR20190105
- Гончаров А.В., Кривцов Е.Б. // ХТТ. 2022. № 2. С. 26. [Solid Fuel Chemistry, 2022, vol. 56, no. 2, p. 108. https://doi.org/10.3103/S0361521922020136]. https://doi.org/10.31857/S002311772202013X
- 9. Сергиенко С.Р., Таимова Б.А., Талалаев Е.И. Высокомолекулярные неуглеводородные соединения нефти. Смолы и асфальтены. М.: Наука, 1979. 269 с.
- Дмитриев Д.Е., Головко А.К. // Нефтехимия. 2010. Т. 50. № 2. С. 118. [Petrol. Chemistry, 2010, vol. 50, no. 2, p. 106. https://doi.org/0.1134/S0965544110020040].