УДК 665.64:547.83

АЗОТСОДЕРЖАЩИЕ ОСНОВАНИЯ БИТУМИНОЗНЫХ НЕФТЕЙ

© 2023 г. Н. Н. Герасимова^{1,*}, Т. А. Сагаченко^{1,**}, Р. С. Мин^{1,***}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия

*e-mail: dm@ipc.tsc.ru **e-mail: dissovet@ipc.tsc.ru ***e-mail: lgosn@ipc.tsc.ru Поступила в редакцию 31.10.2022 г. После доработки 28.11.2022 г. Принята к публикации 07.12.2022 г.

Методы структурно-группового анализа и хроматомасс-спектрометрии использованы для характеристики высоко- и низкомолекулярных азотсодержащих оснований битуминозных нефтей из различных нефтегазоносных провинций России. Установлено, что высокомолекулярные основания близки по своей структурной организации: их усредненные молекулы практически не различаются по числу структурных блоков, содержанию в них ароматических и нафтеновых циклов и числу атомов углерода в парафиновых фрагментах. Показано, что в составе низкомолекулярных оснований всех нефтей присутствуют сходные наборы алкилзамещенных хинолинов, бензохинолинов, азапиренов, тиофено- и бензотиофенохинолинов.

Ключевые слова: *битуминозная нефть, азотсодержащие основания, состав, структура* **DOI:** 10.31857/S0023117723020044, **EDN:** BFCYPW

введение

Интерес к изучению химической природы азотсодержащих оснований (АО) нефтяных дисперсных систем обусловлен, главным образом, их негативным влиянием на процессы добычи и нефтепереработки и качество получаемых горюче-смазочных материалов [1-5]. Особое значение исследования, направленные на получение данных о составе и структуре АО, имеют в настоящее время. Это связано с неуклонным ростом в балансе добываемого и перерабатываемого углеводородного сырья доли тяжелых нефтей, одной из особенностей которых является высокое содержание гетероатомных компонентов, в частности, азоторганических соединений основного характера. Для разработки технических решений в области рационального использования такого нетрадиционного углеводородного сырья необходимы получение и обобщение информации о строении АО тяжелых нефтей.

В данной работе обсуждаются особенности структуры и молекулярный состав АО тяжелых нефтей различных нефтегазоносных провинций (НГП) России.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы нефтей отобраны из отложений палеозойского комплекса Тимано-Печорской НГП

(Усинское месторождение, I) и Волго-Уральской НГП (Ашальчинское месторождение, II и Нурлатское месторождение, III). Нефти относятся к классу битуминозных ($\rho = 971.5, 978.0$ и 964.0 кг/м³), высокосернистых (S = 1.98, 3.89, 4.70 мас. %), характеризуются высоким содержанием общего (N_{обш}) и основного азота (N_{осн}), но при этом различаются по суммарному содержанию азотистых соединений и доле оснований в их составе. Так, концентрация N_{obm} в ряду нефтей I–II–III возрастает (0.64–0.67–0.73 мас. %), а концентрация N_{осн} уменьшается (0.19-0.12-0.07 мас. %). Следовательно, относительное содержание N_{осн} $(N_{och}/N_{obm} \times 100)$ в исследованных нефтях снижается и составляет соответственно 29.7-17.9-9.6 отн. %. Большая часть основного азота нефтей в ряду I-II-III (55.0-67.5-71.1 отн. %) концентрируется в их смолистых веществах. На долю асфальтенов приходится соответственно 16.4-21.9-27.0, на долю масел - 28.3-10.6-1.9 отн. %. Такая особенность распределения N_{осн} по нефтяным компонентам может свидетельствовать о том, что АО битуминозных нефтей, использованных в работе, различаются по химической природе.

АО выделяли из деасфальтенизированных нефтей по схеме (рис. 1), основанной на сочетании методов осаждения высокомолекулярных АО газообразным хлористым водородом (К-1), доосаждения растворимых в углеводородной среде

Рис. 1. Схема выделения азотсодержащих оснований.

хлористоводородных солей высокомолекулярных АО с помощью диэтиламина (K-2) и экстракции низкомолекулярных оснований уксуснокислым раствором серной кислоты (K-3) [6]. Предварительное выделение асфальтенов способствует снижению вязкости нефтяной системы и, как следствие, более полному извлечению АО из смол и масел. Дифференцирование оснований по молекулярной массе в процессе выделения значительно упрощает задачу последующего изучения их состава и строения.

Для характеристики полученных концентратов К-1, К-2 и К-3 использовали метод структурно-группового анализа (СГА) [7, 8], основу которого составляют значения их средних молекулярных масс, данные элементного анализа и результаты определения относительного содержания протонов в различных структурных фрагментах молекул выделенных соединений [9–11].

Элементный состав концентратов определяли на автоматическом анализаторе CHSN "Vario EL Cube". Молекулярные массы (MM) измеряли методом криоскопии в бензоле. Спектры ¹Н ЯМР снимали на спектрометре ЯМР-Фурье "AVANCE AV 400" фирмы "Bruker", используя в качестве растворителя CDCl₃, а в качестве стандарта – тетраметилсилан. Расчет средних структурных параметров молекул АО проводили по программе, зарегистрированной в Роспатенте (Russian Federal Service for Intellectual Property) [12].

Рассчитаны: общее число колец (K_o) и число атомов углерода в парафиновых (C_n) структурах усредненной молекулы; число структурных блоков в усредненной молекуле (m_a); общее число (K_o^*), число ароматических (K_a^*) и нафтеновых ($K_{\rm H}^*$) циклов в структурном блоке; количество атомов углерода в парафиновых фрагментах (C_n^*) структурного блока; количество алифатических атомов углерода, находящихся в α -положении к ароматическим ядрам (C^*_{α}), и количество атомов углерода в не связанных с ароматическими ядрами терминальных метильных группах (C^*_{γ}).

Хроматомасс-спектрометрический (ГХ–МС) анализ образцов АО выполнен на приборе *DFS* фирмы "*Thermo Scientific*". Подробное описание условий получения спектров, их обработки и подходов к идентификации соединений приведено в [6].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как следует из данных, приведенных в табл. 1, общее количество выделяемых АО симбатно концентрации в нефтях основного азота. В ряду нефтей I–II–III суммарное содержание концентратов снижается и составляет 10.10–6.89–3.23 мас. % соответственно. Во всех случаях большую часть выделенных соединений составляют высокомолекулярные основания К-1, при этом их относительное содержание в составе АО нефтей в ряду I–II–III увеличивается (74.1–82.0–91.0 отн. %). Количество высокомолекулярных соединений К-2 в нефти I сопоставимо с количеством низкомолекулярных оснований К-3, а в нефтях II и III количество оснований К-3.

Согласно данным СГА углеводородные скелеты усредненных молекул высокомолекулярных и низкомолекулярных оснований всех нефтей по своему строению идентичны. Их основу составляют полициклические структуры (K_0), обрамленные алкильными заместителями (C_n) (табл. 2). Наибольшими размерами полициклических фрагментов характеризуются усредненные молекулы оснований K-1, наименьшими – усреднен-

Образец	Нефть I (Усинское месторождение)			(Ашальчі	Нефть I инское мес	[] сторождение)	Нефть III (Нурлатское месторождение)			
	доля, мас. %	ММ, а.е.м.	содержание N _{осн} , мас. %	доля, мас. %	ММ, а.е.м.	содержание N _{осн} , мас. %	доля, мас. %	ММ, а.е.м.	содержание N _{осн} , мас. %	
K-1	7.37	1240	1.18	5.67	840	0.96	2.98	800	0.86	
K-2	1.41	494	0.99	0.39	605	0.98	0.04	550	0.92	
K-3	1.32	366	1.34	0.83	358	2.21	0.21	325	0.87	

Таблица 1. Результаты выделения азотсодержащих оснований

ные молекулы оснований К-3. Соединения К-2 занимают промежуточное положение по общей цикличности молекул. Аналогично изменяется и число парафиновых атомов углерода в алкильном замещении усредненных молекул АО концентратов в ряду К-1 – К-2 – К-3.

Усредненные молекулы наиболее высокомолекулярных АО преимущественно двублочные $(m_a = 2.61 - 2.08 - 1.94)$. В составе высокомолекулярных оснований К-2, помимо двублочных молекул, присутствуют молекулы, построенные из одного структурного блока ($m_a = 1.44 - 1.51 - 1.51$), а в составе низкомолекулярных оснований К-3 преобладают моноблочные молекулы ($m_a = 1.24 - 1.24$ 1.23–1.08). Основу структурного блока усредненной молекулы АО каждого концентрата составляет обрамленная алкильными группами полициклическая система (К^{*}₀), в которой в сопоставимых количествах сочетаются ароматические (К^{*}_a) и нафтеновые (К^{*}_н) циклы. Явных различий в значениях параметров (K_0^*) , (K_a^*) , (K_H^*) средних структурных блоков АО однойменных концентратов нефтей I-II-III не прослеживается. Не существенно меняется и число парафиновых атомов углерода в структурных блоках АО одноименных концентратов всех нефтей.

Число атомов углерода, непосредственно связанных с ароматическим ядром (C^*_{α}) структурных блоков высокомолекулярных оснований K-1 всех нефтей, больше четырех.

Это указывает на то, что содержащиеся в структурных блоках ароматические и нафтеновые кольца сконденсированы между собой и ароматическое ядро расположено внутри нафтеноароматического образования. Особенностью АО К-2 и К-3 является крайнее расположение ароматических ядер в полициклической системе их средних структурных блоков ($C_{\alpha}^* < 4$).

Среднее число атомов углерода в парафиновых фрагментах (С^{*}_п) структурных блоков усредненных молекул высоко- и низкомолекулярных АО всех нефтей превышает количество терминаль-

ных метильных групп в насыщенных фрагментах молекул (C_{γ}^*). Следовательно, многие из этих фрагментов представляют собой линейные или слаборазветвленные алкильные цепочки.

Совокупность результатов, полученных с привлечением методом СГА, позволяет сделать вы-

Таблица 2. Расчетные параметры средних молекул азотсодержащих оснований по данным структурногруппового анализа

Пара- метр	Нефть I			He	ефть	II	Нефть III			
	K-1	K-2	K-3	K-1	K-2	K-3	K-1	K-2	K-3	
Ko	15.76	5.83	3.94	10.80	7.52	4.35	10.74	6.51	3.38	
C_{π}	20.85	8.48	7.95	12.19	8.89	5.78	9.61	9.67	6.28	
m_a	2.61	1.44	1.24	2.08	1.51	1.23	1.94	1.51	1.08	
K _o *	6.04	4.06	3.17	5.18	4.98	3.54	5.54	4.31	3.14	
K [*] _a	3.08	1.93	1.54	2.69	2.01	1.51	2.54	2.02	1.19	
К*	2.96	2.13	1.63	2.49	2.96	2.02	3.00	2.28	1.95	
C^*_{π}	7.99	5.90	6.40	5.85	5.88	4.70	4.96	6.40	5.83	
C^{*}_{α}	4.71	3.33	3.60	4.62	4.12	3.94	4.52	3.95	3.38	
C_{γ}^{\ast}	2.15	1.67	2.05	1.37	1.84	1.92	1.86	1.69	2.03	
N*	0.53	0.37	0.46	0.47	0.36	0.48	0.51	0.52	0.39	
S*	0.48	0.32	0.31	0.62	0.44	0.41	0.82	0.63	0.78	

Примечание. Величина $K_0 - общее число колец и C_п - число атомов углерода в парафиновых структурах усредненной молекулы; <math>m_a - число структурных блоков в усредненной молекуле; <math>K_0^* - общее число, K_a^* - число ароматических и K_H^* - число нафтеновых циклов в структурном блоке усредненной молекулы; <math>C_n^* - количество атомов углерода в парафиновых фрагментах, <math>C_{\alpha}^* - количество алифатических атомов углерода, находящихся в <math>\alpha$ -положении к ароматическим ядрам и $C_{\gamma}^* - количество атомов углерода в не связанных с ароматическими ядрами терминальных метильных группах структурного блока.$

Соелицение	CTNVKTVD2	Нефть I		Нефть II		Нефть III	
Соединение	Структура	К-1гр	K-3	К-1гр	K-3	К-1гр	K-3
Алкилхинолины	R	C ₄ -C ₈	C ₃ -C ₇	C ₃ -C ₈	C ₄ -C ₈	C ₃ -C ₈	C ₃ -C ₇
Алкилбензо-хинолины	R N R	C ₁ –C ₆	C ₁ –C ₆	C ₂ –C ₈	C ₂ -C ₇	C ₂ -C ₆	C ₂ –C ₄
Алкилазапирены	R	C ₁ –C ₅	Отсут- ствуют	C ₃ -C ₅	C ₁ -C ₅	C ₃ -C ₆	C ₁ –C ₄
Алкилтиофено-хинолины	R S S	C ₂ -C ₅	C ₂ -C ₆	C ₄ -C ₇	C ₂ -C ₆	C ₂ -C ₇	C ₃ -C ₆
Алкилбензо-тиофенохинолины	N S	C ₁ –C ₄	C ₁ –C ₄	C ₂ -C ₆	C ₂ -C ₇	C ₂ -C ₇	C ₁ –C ₆

Таблица 3. Молекулярный состав азотсодержащих оснований

вод, что высоко- и низкомолекулярные АО использованных в работе битуминозных нефтей имеют сходное строение молекул.

Следует отметить, что в составе исследованных высоко- и низкомолекулярных оснований тяжелых нефтей присутствуют мультигетероатомные структуры. Так, часть структурных блоков средних молекул всех АО, наряду с атомом азота, содержит атомы серы (табл. 2). Наиболее богаты серой структурные блоки средних молекул высоко- и низкомолекулярных оснований наиболее высокосернистой нефти III.

Ранее нами показано, что концентраты К-1 представляют собой сложные смеси соединений с широким молекулярно-массовым распределением, разделение которых методом экстракции горячим *н*-гексаном позволяет выделить из них фракции гексанорастворимых (К-1гр) и гексанонерастворимых компонентов (К-1гнр) [13, 14]. АО К-1гр отличаются от АО К-1гнр меньшей молекулярной массой, пониженной ароматичностью молекул за счет более развитого нафтенового и алкильного замещения ароматических ядер и могут быть охарактеризованы методом ГХ-МС [6]. Экспериментально установлено, что в составе концентратов К-1, выделенных из нефтей I–II–III, доля оснований К-1гр (MM = 527–517–411 а.е.м.) составляет 27.5–28.1–45.5%.

ГХ-МС фракций К-1гр и концентратов низкомолекулярных АО К-3 позволила получить дополнительную информацию о составе АО тяжелых нефтей.

Согласно полученным данным, в составе АО К-1гр и К-3 всех нефтей присутствуют сходные наборы азот- и азотсерусодержащих соединений (табл. 3). Идентифицированные азаарены и гибридные соединения представлены близкими по молекулярно-массовому распределению алкилхинолинами, алкилбензохинолинами, алкилазапиренами, алкилтиофенохинолинами и алкилбензотиофенохинолинами. Наличие одноименных соединений в составе АО. полученных различными способами выделения, вероятнее всего, связано с особенностями их структуры, обусловленными, в частности, экранированием атома азота пиридинового кольца алкильными заместителями [15, 16]. Сравнение масс-хроматограмм идентифицированных соединений показывает, что в составе АО К-3 доля гомологов с

Рис. 2. Масс-хроматограммы C_3 -бензо[*h*]хинолинов по m/z = 221 К-1гр (а) и К-3 (б) нефти I (звездочка – 2,3,4-триметилбензо[*h*]хинолин).

экранированным атомом азота выше, чем в составе АО образцов К-1гр. В качестве примера на рис. 2 приведены масс-хроматограммы C_3 -бензохинолинов, установленных в составе К-1гр и К-3 нефти I ((а) и (б) соответственно). В обоих образцах они представлены смесью триметилбензо[*h*]хинолинов. Однако среди C_3 -бензохинолинов К-3 выше доля структур с большей хроматографической подвижностью, что указывает на повышенное содержание изомеров с экранированным атомом азота.

ЗАКЛЮЧЕНИЕ

Проведено сравнительное изучение структуры и молекулярного состава АО тяжелых палеозойских нефтей месторождений Усинское (I, Тима-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2-3 2023

но-Печорская НГП), Ашальчинское и Нурлатское (II и III, Волго-Уральская нефтегазоносная провинция), различающихся по суммарному содержанию азотистых соединений и доле оснований в их составе.

Показано, что во всех нефтях АО представлены сложной смесью высокомолекулярных (К-1, К-2) и низкомолекулярных компонентов (К-3).

Количество выделяемых АО симбатно концентрации в нефтях основного азота и снижается при переходе от нефти I к нефти III. Основной вклад в состав АО всех нефтей вносят наиболее высокомолекулярные основания К-1, относительное содержание которых в сумме выделенных соединений в ряду нефтей I–II–III увеличивается. Количество высокомолекулярных соединений К-2 в нефти I сопоставимо с количеством низкомолекулярных оснований К-3, а в нефтях II и III количество оснований К-2 существенно ниже количества оснований К-3.

АО одноименных концентратов имеют сходное строение усредненных молекул. Так, молекулы оснований К-1 состоят преимущественно из двух структурных блоков. В составе высокомолекулярных оснований К-2, помимо двублочных молекул, присутствуют молекулы, построенные из одного структурного блока, а в составе низкомолекулярных оснований К-3 преобладают моноблочные молекулы. Основу структурного блока усредненной молекулы АО каждого концентрата составляет обрамленная алкильными фрагментами полициклическая система, в которой в сопоставимых количествах сочетаются ароматические и нафтеновые циклы. Ароматическое ядро среднего структурного блока молекул АО К-1 расположено в центре его полициклической системы, в средних структурных блоках молекул АО К-2 и К-3 оно занимает крайнее положение.

По общей цикличности средних структурных блоков молекул, содержанию в них ароматических и нафтеновых циклов и числу атомов углерода в парафиновых фрагментах, многие из которых представляют собой линейные или слаборазветвленные алкильные цепочки, АО одноименных концентратов нефтей I–II–III практически не различаются.

В составе АО всех нефтей присутствуют сходные наборы азот- и азотсерусодержащих соединений. Идентифицированные азаарены и гибридные соединения представлены близкими по молекулярно-массовому распределению алкилхинолинами, алкилбензохинолинами, алкилазапиренами, алкилтиофенохинолинами и алкилбензотиофенохинолинами.

Результаты проведенного исследования расширяют представления о составе и строении компонентов тяжелых нефтей и могут быть использованы при разработке инновационных способов их переработки.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Минобрнауки РФ (НИОКТР 1210312000185-6).

СПИСОК ЛИТЕРАТУРЫ

- Prado G.H.C., Rao Y., De Klerk A. // Energy Fuels. 2017. V. 31. № 1. P. 14. https://doi.org/10.1021/acs.energyfuels.6b02779
- Chen X., Liu Y., Li S., Feng X., Shan H., Yang C. // Energy Fuels. 2017. V. 31. № 4. P. 3659. https://doi.org/10.1021/acs.energyfuels.6b03230
- Kong J., Wei X.Y., Yan H.L., Li Z.K., Zhao M.X., Li Y., Zong Z.M. // Fuel. 2015. V. 159. P. 385. https://doi.org/10.1016/j.fuel.2015.06.091
- Chen X., Li T., Xin L., Yang Y., Shan H., Yang C. // Catalysis Communications. 2016. V. 74. P. 95. https://doi.org/10.1016/j.catcom.2015.11.008
- Li S.J., Liu N.N. // Petroleum Science and Technology. 2017. V. 35. № 11. P. 1141. https://doi.org/10.1080/10916466.2017.1312444
- Cheshkova T.V., Sergun V.P., Kovalenko E.Y., Gerasimova N.N., Sagachenko T.A., Min R.S. // Energy Fuels. 2019. V. 33. № 9. P. 7971. https://doi.org/10.1021/acs.energyfuels.9b00285
- 7. *Камьянов В.Ф., Большаков Г.Ф. //* Нефтехимия. 1984. Т. 24. № 4. С. 450.
- Головко А.К., Камьянов В.Ф., Огородников В.Д. // Геология и геофизика. 2012. Т. 53. № 12. С. 1786. [Russian Geology and Geophysics, 2012, vol. 53,

no. 12, p. 1374.

https://doi.org/10.1016/j.rgg.2012.10.010].

9. Fergoug T., Bouhadda Y. // Fuel. 2014. V. 115. № 1. P. 521.

https://doi.org/10.1016/j.fuel.2013.07.055

- Nguyen N.T., Kang K.H., Lee C.W., Kim G.T., Park S., Park Y.K. // Fuel. 2019. V. 235. p. 677. https://doi.org/10.1016/j.fuel.2018.08.035
- 11. Ok S., Mal T.K. // Energy Fuels. 2019. V. 33. № 11. P. 10391.

https://doi.org/10.1021/acs.energyfuels.9b02240

- 12. Дмитриев Д.Е., Головко А.К. Свидетельство о государственной регистрации программы для ЭВМ QMR № 2010612415 от 06.04.10 г. [Certificate of Registration of Computer Program QMR No. 2010612415 from 06.04.10]
- Герасимова Н.Н., Мин Р.С., Сагаченко Т.А. // Изв. Томск. политехн. ун-та. Инжиниринг георесурсов. 2018. Т. 329. № 11. С. 17. [Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2018, vol. 329, no. 11, p. 17]. https://doi.org/10.18799/24131830/2018/11/205
- 14. Герасимова Н.Н., Сагаченко Т.А., Мин Р.С., Федорова Т.В. Азотистые основания смол битуминозной нефти Ашальчинского месторождения Татарстана и их превращения при термической обработке. // Химия в интересах устойчивого развития. 2020. Т. 28. № 3. С. 246. https://doi.org/10.15372/KhUR2020225
- Kovalenko E.Yu., Gerasimova N.N., Sagachenko T.A., Min R.S., Patrakov Y.F. // Energy Fuels. 2020. V. 34. № 8. P. 9563. https://doi.org/10.1021/acs.energyfuels.0c01796
- 16. Химический состав нефтей Западной Сибири / под ред. Г.Ф. Большакова. Новосибирск: Наука. Сибирское отделение, 1988. 288 с.