УДК 550.43: 553.96

МЕТАЛЛОНОСНОСТЬ БУРЫХ УГЛЕЙ РАЙЧИХИНСКОГО МЕСТОРОЖДЕНИЯ (ПРИАМУРЬЕ, ДАЛЬНИЙ ВОСТОК): УСЛОВИЯ НАКОПЛЕНИЯ, РАСПРЕДЕЛЕНИЯ, ПЕРСПЕКТИВЫ ОСВОЕНИЯ (*ОБЗОР*)

© 2023 г. А. П. Сорокин^{1,*}, О. А. Агеев^{1,**}, С. В. Дугин^{1,***}, А. А. Попов^{1,****}

¹ ФГБУН Институт геологии и природопользования ДВО РАН, 675000 Благовещенск, Россия

*e-mail: sorokinap@ignm.ru **e-mail: vip.ageev2014@mail.ru ***e-mail: duservad@gmail.com ****e-mail: aqva@ascnet.ru Поступила в редакцию 23.09.2022 г. После доработки 03.10.2022 г. Принята к публикации 05.10.2022 г.

Изучено формирование металлоносных угленосных отложений Райчихинского месторождения в зоне сопряжения питающих провинций Бурейского поднятия и областей угленакопления Зейско-Буреинского осадочного бассейна. Установлено, что оно происходило в условиях последовательных процессов извлечения рудных компонентов из кор выветривания Бурейского поднятия, транспортировки и разгрузки их в палео-дельте р. Бурея. Эти процессы протекали синхронно с вулканической деятельностью в Сихотэ-Алинском орогенном поясе, с которой связан привнос вулканического пепла. Сопряженность этих событий позволила выделить два типа обогащения редкоземельных элементов и иттрия (REY) райчихинских углей: терригенный — с поступлением REY поверхностными водами и комбинированный терригенно-вулканогенный, связанный с осыпанием и выщелачиванием кислых и щелочных вулканических пеплов. В углях и продуктах их сгорания преобладают лантаноиды цериевой группы. Наибольшая доля REY содержится в золе-уноса (0.11% от общей массы). Механизмы накопления рудных компонентов на стадии торфяной залежи рассмотрены с позиций локализации рудных микрокомпонентов в виде кластогенно-минеральных форм и в условиях взаимодействия рудных растворов с органической средой торфяников. Проведена оценка качества REY, выделены наиболее обогащенные участки пласта "Верхний". Перспективы извлечения из угля лантаноидов рассмотрены с позиции возможности вовлечения в этот процесс также целого ряда редких, цветных и благородных металлов.

Ключевые слова: осадочный бассейн, горный массив, питающие провинции, металлоносные угли, коры выветривания, извлечение, транспортировка, накопление рудных компонентов, REY, редкие, цветные, благородные металлы, перспективность месторождения

DOI: 10.31857/S0023117723010097, EDN: IWEJRS

введение

В настоящее время уголь обеспечивает значительную часть мирового энергопотребления, но в то же время он рассматривается в качестве потенциального источника таких важных элементов, как Ge, Ga, U, V, Se, редкоземельных элементов, Y, Sc, Nb, Au, Ag и Re, а также Al и Mg [1–3]. Анализ тенденций развития мировой экономики свидетельствует о том, что спрос на эти металлы, в первую очередь на редкоземельные элементы, будет увеличиваться в течение последующих лет.

В 2022 г. распоряжением от 30 августа 2022 г. № 2473-р Правительство РФ большая группа редких, редкоземельных, цветных и благородных металлов отнесена к основным видам стратегического минерального сырья. Россия по запасам почти всех этих элементов занимает ведущие позиции в мире. Основная их часть (около 60%) связана с попутным извлечением из руд черных, цветных металлов, нерудного сырья, углей и других полезных ископаемых [4]. Это во многом определяет большое внимание, которое уделяется в последние десятилетия исследованию альтернативных, по отношению к собственно рудным месторождениям, источников редких металлов. Они включают коры выветривания алюмосиликатных и изверженных щелочных пород, близкие к "ионным" глинам Китая, переотложенные их продукты, "Y-земельные" аргиллизиты, бурые угли, в том числе обогащенные в условиях выщелачивания редкоземельных элементов из тонштейнов и за счет наложенных гидротермальных процессов, и др. [1-3, 5-13].

На российском Дальнем Востоке угли с высокими концентрациями редкоземельных элементов были впервые установлены в Приморье в конце прошлого столетия. Они содержатся в сорбированной форме (в органическом веществе и с частицами глины) и в мелкозернистых аутигенных минералах. Формирование их, по мнению В.В. Середина [14], происходило в эрозионнотектонических депрессиях, с широко развитыми корами выветривания, на торфяной стадии одновременно с бимодальным вулканизмом.

В последующих публикациях В.В. Середина и соавт. [1, 7] были обобщены данные по распределению и обогащению редкоземельных элементов в угольных бассейнах, а также перспективы их использования в качестве попутных продуктов добычи при сжигании угля. Было установлено широкое распространение аномальных скоплений лантаноидов и иттрия во многих месторождениях угля при высоком содержании REY (>0.1%) не только в угольной золе (до 1830.04 г/т), но и во вмещающих породах (до 477.00 г/т). Для угольной золы с высоким содержанием REY характерны три схемы их распределения: легкие (LREY) – $(La_N/Lu_N > 1)$, средние (*M*REY) – $(La_N/Sm_N < 1)$, $Gd_N/Lu_N > 1$) и тяжелые (*H*REY) – (La_N/Lu_N < 1). Вылелено четыре генетических типа обогашения REY в угольных бассейнах: терригенный тип с поступлением REY поверхностными водами; туфогенный тип, связанный с поступлением и выщелачиванием кислых и щелочных вулканических пеплов; инфильтрационный или метеорный тип, обусловленный подземными водами; и гидротермальный тип, связанный с восходящими потоками термальных минеральных и глубинных флюидов. Установлено, что основные режимы возникновения REY с высоким содержанием локализованы в тонкозернистых аутигенных минералах (REY-содержащие фосфаты и сульфаты алюминия алунитовой группы, водосодержащие фосфаты и карбонаты) и в органических соединениях.

Геохимические процессы, протекающие при формировании металлоносных углей туфогенного типа, детально исследованы в работах [12, 13, 15]. В [12] изучены минеральный и химический состав тонштейнов Азейского угольного месторождения Иркутского бассейна (Южная Сибирь, Россия). В тонштейнах и углях этого месторождения отмечены повышенные содержания лантаноидов, Y, Zr, Hf, U, Th, Ta, Sn, Ga, Cu, Pb, Se, Hg, Sb и Te. При этом наиболее высокие их концентрации установлены в углях на контакте с тонштейнами, где происходит их обогащение за счет выщелачивания микрокомпонентов из тонштейнов.

В последние десятилетия широкомасштабные исследования редкоземельного оруденения проводятся в южном Приморье [1, 14, 16-19]. В обзорной публикации И.Ю. Чекрыжова [20] изложены данные по Ванчинскому, Павловскому, Раковскому и Реттиховскому буроугольным месторождениям, в которых содержание в углях суммы лантаноидов и иттрия составляет ≥0.1%. Авторами выделено три типа редкоземельной минерализации: терригенная, туфогенная и эксфильтрационная. Концентрации лантаноидов в углях туфогенного генетического типа Ванчинского месторождения колеблются в пределах от 250 до 750 г/т. а в угольной золе – от 0.1 до 0.3%. Содержания иттрия в золе колеблются от 280 до 1349 г/т или от 22 до 58% от суммы редкоземельных элементов. Для терригенного типа (Раковское месторождение) среднее содержание REY в угольной золе изменяется от 0.14 до 0.22%. Широко развитый эксфильтрационный тип характеризуется максимальными концентрациями редкоземельных элементов до 316 г/т – в углях и до 1215 г/т – в золе углей Павловского месторождения и – до 0.5% – в золе углей Реттиховского месторождения.

В бурых углях Приамурья редкоземельные, рассеянные элементы, цветные и благородные металлы выявлены в палеогеновых (Ерковецкое, Райчихинское, Архаро-Богучанское) и нижнесреднемиоценовых (Свободное, Сергеевское, Тыгдинское) месторождениях. Установлено, что палеогеновые угли Приамурья характеризуются наиболее широким геохимическим и минералогическим разнообразием. Содержание REY в углях и продуктах их сгорания колеблется, соответственно, в пределах 80–100 г/т, достигая максимума в угольной золе 1000 г/т и более. Кроме этого, в продуктах их сгорания широко представлены самородное золото, серебро и платиноиды, а также Pb, Cu, Zn, Fe, Ni, Cr, W, Sn, Be [8, 21, 22].

Изучение рудоносности этих углей проводится в пределах угленосных площадей на восточной окраине Зейско-Буреинского осадочного бассейна, где с уже известными типами редкоземельных углей существуют широкие возможности выявления новых объектов [8–10].

Цель работы — изучение условия формирования типов оруденения в бурых углях зоны сопряжения Зейско-Буреинского бассейна и Туранского (Буреинского) массива; исследование минерального и элементного состава микровключений в бурых углях и продуктах их сгорания; оценка перспектив их промышленного освоения в качестве редкоземельного сырья.

1. ХАРАКТЕРИСТИКА ОБЪЕКТОВ И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ

1.1. Природные объекты (бурые угли осадочного бассейна и питающие их рудные провинции). В последние десятилетия изучение металлоносности палеогеновых углей проводилось на восточной окраине Зейско-Буреинского осадочного бассейна в зоне сопряжения с Туранским (Буреинским) массивом. Выбор этого региона определяется, с одной стороны, широким распространением угленосных площадей в этой части бассейна и, с другой, – разнообразием глубоко вскрытых питающих провинций массива с благородным, редкометалльным и редкоземельным типами минерализации. В то же время существуют определенные различия в условиях вскрытия и транспортировки рудных микрокомпонентов к областям их накопления. Эти особенности во многом определяются структурной неоднородностью Туранского массива, претерпевшего неоднократные этапы активизации. С одним из таких этапов в палеогене связано образование в центральной части массива Бурейского поднятия, ограниченного с севера и юга, соответственно, Селемлжинско-Томской и Архаринской эрозионными депрессиями (грабенами) (рис. 1). В раннем кайнозое эти депрессии служили транспортными артериями, по которым палео-Томь переносила на многие десятки километров терригенный материал с рудными микрокомпонентами на равнину и разгружала его в пределах Романовского прогиба с благоприятными условиями для формирования озерно-болотных комплексов [10]. Но, в это же время, существовали и другие формы взаимодействия в системе бассейн-массив. К ним можно отнести зону непосредственного сопряжения Бурейского поднятия с Завитинско-Архаринской угленосной площадью. Здесь процесс миграции включает транспортировку осадков палео-Буреей непосредственно по территории поднятия и разгрузку у их подножья в дельте реки, в пределах Куприяно-Райчихинского предгорного прогиба, с расположенным в его пределах Райчихинского буроугольного месторождения (рис. 1). История этих процессов исследована на базе вышеприведенных структур – как опорных объектов.

Угленосные отложения Райчихинского месторождения выделяются в составе кивдинской свиты палеогенового возраста мощностью 70-80 м. В нижних частях разреза свита сложена аллювиально-пролювиальными, песчано-гравийными и галечными отложениями, которые выше по разрезу сменяются глинами и алевритами с линзами песков и пластами бурых углей. В кивдинской свите установлено пять угольных пластов, но только пласт "Верхний" обладает промышленными характеристиками. Угли месторождения гумусовые — двух классов: гелитолиты и фюзенолиты. Мацеральный состав углей характеризуется высоким содержанием гуминита (в среднем 60— 70%). Часто встречается инертинит (25–35%), редко — липтинит (1–3%). Минеральные включения составляют в среднем 10–18%. Качество угля следующее (%): влага 33–42; зола 10–23.4; содержание летучих 37–47; сера 0.14–0.34; углерод 70–71; водород 3–4. Теплота сгорания высшая 5700–6400 ккал/кг, низшая 3480 ккал/кг [23].

Изучение угленосных отложений проведено на значительной части территории месторождения с детальным описанием угольного пласта "Верхний" и вмещающих пород. Наряду с детальным исследованием наиболее мощного разреза пласта угля в центре месторождения (участок "Северо-Восточный центральный") изучены разрезы на южной окраине месторождения с пониженной (до 2 м) мощностью пласта (участки "Вятка", "Широкий"). Опробование проведено по двум схемам. С целью получения общей характеристики пласта "Верхний" в центральной части месторождения сплошной бороздой отобрана крупнообъемная проба весом 200 кг. Опробование углей по периферии месторождения выполнено с отбором бороздовых проб по пласту через 0.2-0.5 м, весом 12-15 кг, а по вмещающим породам – с интервалом 0.3–1.5 м.

Формирование угленосных отложений Райчихинского месторождения неразрывно связано с Бурейским поднятием. Основу поднятия формируют интрузивные породы преимущественно кислого состава палеозойского (Суларинский, Тырма-Буреинский комплексы) и триасового (Харинский комплекс) возраста и лишь на восточной окраине Бурейского поднятия развиты раннемеловые эффузивно-осадочные породы. В позднем мелу Бурейское поднятие развивалось в условиях тектонического покоя с формированием кор выветривания химического типа (рис. 1). В палеогене это состояние сменилось новейшими тектоническими движениями, которые сопровождались размывом кор выветривания, вскрытием коренных источников, переносом терригенных образований вместе с рудными микрокомпонентами и накоплением их в дельте р. Бурея на выходе на аллювиальную равнину. Современный ресурсный потенциал Бурейского поднятия определяется преимущественно редкоземельной, благороднометалльной, свинцово-цинковой, молибденовой, олово-вольфрамовой, бериллиевой минерализацией. Коренные источники сосредоточены в основном на правобережной территории р. Бурея, где выявлены рудопроявления цинка, молибдена, вольфрама, бериллия, месторождение золота "Прогнозное" и др. Рудные объекты сопровождаются шлиховыми ореолами касситерита, золота, серебра, антимонита, шеелита, ксенотима, фергюсонита, а также геохимическими

Рис. 1. Схема минерагенического районирования зоны сопряжения Завитинско-Архаринской угленосной площади и Туранского массива: *1* – Зейско-Буреинский осадочный бассейн; *2* – Туранский массив; *3* – тектонические структуры: СТ – Селемджинско-Томская, А – Архаринская эрозионные депрессии (грабены), Б – Бурейское поднятие; *4* – тектонические нарушения (Т – Томский, Б – Бурейский, ЗТ – Западнотуранский разломы); *5* – угленосные площади: Ромненско-Ерковецкая (I), Завитинско-Архаринская (II); *6* – буроугольные месторождения; *7* – геохимические потоки рассеяния; *8* – шлиховые ореолы; *9* – шлихи с повышенным содержанием элементов и минералов; *10* – фрагменты площадных кор выветривания химического типа; *11* – предполагаемая граница распространения пирокластики в палеогене. Граница РФ и КНР проходит по р. Амур.

потоками меди, свинца, цинка, серебра [8, 10, 22, 24–27].

1.2. Исследование углей с получением раздельных продуктов их сгорания. Выделение минеральных компонентов из первичных углей проведено на шлюзовой установке из пробы весом 20.5 кг, измельченной до -0.2 мм. Принцип их выделения основан на разделении в водном потоке тяжелых органических и неорганических веществ, техно-

логия которого приведена в работе А.П. Сорокина и соавт. [28]. Всего из исходного угля было получено четыре пробы минеральных компонентов весом от 25.0 до 47.0 г. Для получения раздельных продуктов сгорания угля (ПСУ) использована авторская установка — Экспериментально-технологический комплекс (ЭТК "Амур"), позволяющая выделять шлак, золу-уноса и шлам [29]. Отдельные усовершенствования ЭТК "Амур-М", предусматривающие слоевое сжигание углей и нара-

Рис. 2. Схема получения разделенных продуктов сгорания бурых углей Райчихинского месторождения на ЭТК "Амур-М".

щивание золы-уноса третьей секцией, включены в схему получения раздельных продуктов сгорания из углей Райчихинского месторождения (рис. 2).

Для выделения минеральных компонентов из сгоревших углей ПСУ проходили последовательную процедуру обогащения, включающую измельчение, гравитацию с получением рудного концентрата и легкой фракции [28]. В итоге из ПСУ было получено десять проб минеральных компонентов весом от 25.0 до 44.0 г.

1.3. Аналитические процедуры. Химический состав пород был изучен с помощью масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) (Cs, Ga, Rb, Sr, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Nb, Hf, Ta, Th, U, Pb) B Институте тектоники и геофизики им. Ю.А. Косыгина (ИТиГ) ДВО РАН (г. Хабаровск). Исследование проводилось в стандартном режиме с использованием Perkin Elmer ICP-MS ELAN 9000 (Perkin Elmer, Уолтем, Массачусетс, США). Кислотное растворение образцов выполнено в HCl, HNO₃, HF и HClO₄. Чувствительность по всей шкале масс была откалибрована с использованием стандартных эталонных растворов, содержащих все элементы, подлежащие анализу в образнах. Относительная погрешность измерения главных и малых элементов составляла 3-10%.

Химический состав, размер и морфология частиц золы изучали с помощью сканирующей электронной микроскопии (SEM/EDS) на приборе YVEGA 3LMH (TESCAN, Брно, Чешская Республика) с энергодисперсионным рентгеновским микроанализатором X-Max80 (Oxford Instruments, Хай-Уиком, Соединенное Королевство) в ИТиГ ДВО РАН. Фотографирование образцов и поиск микровключений проводили преимущественно в режиме обратно рассеянных электронов (BSE-детектор). С его помощью фазы с более высоким средним атомным числом при получении изображения отражаются в контрасте более ярко по сравнению с фазами, имеющими меньшее среднее атомное число. Применявшееся ускоряющее напряжение составляло 20 кВ, ток пучка ~500 пА. Для количественного анализа использовали комплексный эталон № 6067 фирмы "МАС" (Великобритания) и библиотеку профилей линий элементов, встроенную в программу AZtec.

Химический состав зольных остатков исследовали методом атомно-эмиссионной спектроскопии стандартным способом анализа твердых топлив (ГОСТ) на спектрометре с индукционно-связанной плазмой *iCAP 6500 Duo LA* фирмы "*Thermo Scientific*" в ИТиГ ДВО РАН. Содержание органического углерода определяли в ЦКП "Амурский центр минералого-геохимических исследований" Института геологии и природопользования

Рис. 3. Пирротин (а), фрамбоидальный пирит (б) и галенит (в) в первичных углях Райчихинского месторождения.

(ИГиП) ДВО РАН на анализаторе общего органического углерода *TOC – L (Shimadzu, Япония)* с приставкой на твердые образцы *SSM-5500*.

2. РЕЗУЛЬТАТЫ РАБОТ И ИХ АНАЛИЗ

2.1. Химический состав углей и ПСУ Райчихинского месторождения. В результате сжигания 200 кг угля на ЭТК "Амур-М" вес ПСУ составил 28.72 кг. Топочный шлак (ШР) – 26.70 кг (93%), в том числе фракция +10 мм (ШР +10) – 9.50 кг (33.1%), фракция – 10 мм (ШР –10) – 17.20 кг (59.9%). Зола-уноса (ЗУ) – 1.46 кг (5.1%), в том числе: ЗУ-1 – 0.87 кг, ЗУ-2 – 0.57 кг, ЗУ-3 – 0.025 кг. Выход продуктов мокрой очистки дымовых газов составил 0.47 кг (1.6%), в том числе шлам фильтра-отстойника (Шл.ОР) – 0.08 кг, шлам фильтрации (Шл.ФР) – 0.38 кг, техногенная вода (осадок после выпаривания 70 л техногенной воды) (ВТР) – 0.09 кг (0.3%). Вес активированного угля фильтра сорбента (ЗСР) – 0.33 кг.

Химический состав угольной золы (%): SiO₂ -23.6, $Al_2O_3 - 11.50$, $TiO_2 - 0.42$, Fe_2O_3 (общ.) – 40.01, MnO – 0.83, CaO – 21.00, MgO – 1.41, Na₂O – 0.06, K₂O – 0.19, P₂O₅ – 0.07, S(общ.) – 4.39. Отмечено достаточно высокое содержание оксидов кремния и алюминия. По их количественному отношению ($Al_2O_3/SiO_2 < 0.9$) угольную фракцию можно отнести к алюмосиликатному типу [30]. в котором минеральная составляющая в основном глинистой природы, вероятно, каолинового состава, если учитывать наличие каолиновых глин в кровле и почве угольного пласта. Следует отметить высокие концентрации в золе оксида кальция (21%), что при значительном содержании оксида Fe может быть связано с присутствием в углях гуматов, органических соединений железа, а также сульфидов (пирит, марказит, сидерит).

2.2. Минеральные комплексы в первичных углях и продуктах их сгорания. Для проведения дальнейших минералогических исследований выделенные из первичных углей и ПСУ минеральные компоненты были разделены на магнитную, электромагнитную, немагнитную тяжелую и легкую фракции. Полученные фракции исследовались с помощью бинокулярного микроскопа MБС-10 И, а также с использованием электронной микроскопии.

Во фракциях исходных углей преобладают (от 0.20 до 67.50%) обломки горных пород и породообразующие минералы (от 10.50 до 51.70%) изверженных образований Туранского массива. Также, с помощью минералогического анализа, определены акцессорные (апатит, сфен, магнетит, циркон, ильменит, гранат, корунд и др.) и вторичные (эпидот, серицит, хлорит и др.) минералы. В единичных знаках присутствуют сульфиды цинка, свинца, меди и карбонат.

Результаты электронно-микрозондового анализа (рис. 3) в целом подтверждают вышеприведенный состав минералов. Большинство из них, например, пирротин встречается в форме хорошо ограненных кристаллов и их обломков (рис. 3, а) размером от 50 до 470 мкм. Кристаллы пирротина (рис. 3, а) содержат Со (9.39%), Ni (4.96%) и As (0.92%). Также присутствуют микросферы фрамбовидного пирита (рис. 3, 6) радиусом от 15 до 30 мкм. Микросферы включают примеси As (0.91%) и Al (0.03%). Исключение составляют зерна предположительно галенита (рис. 3, в) с примесью Se (5.68%), Ba (1.59%) и Cu (0.97%).

Минералогические исследования продуктов сгорания углей показали преобладание (до 70%) обломков горных пород, породообразующих, акцессорных и вторичных минералов, но впервые в шлаке обнаружены единичные зерна Au. Электронно-микрозондовым анализом (рис. 4) установлено, что Au округлой (окатанной) формы размером 121 × 98 мкм с примесью Hg (9.08–18.30%) и Ag (1.51–3.92%) (рис. 4, а). Кроме того, в шлаке выявлены частицы Cu в форме округлого зерна (рис. 4, б) и в виде проволоки (рис. 4, в). Зерно Cu содержит Al (6.66%), покрыто налетом из SiO₂ с примесями Al (3.44%), Ca (1.05%), K

Рис. 4. Аи (а) и Си (б), (в) в шлаке продуктов сгорания углей Райчихинского месторождения.

Рис. 5. Au (а), (б), Ag (в), сплавы: Cu–Zn (г), Pb–Sn (д), фрамбоидальный пирит (е) в золе-уноса продуктов сгорания углей Райчихинского месторождения.

(0.93%), Fe (0.73%) и Br (0.63%). Частица Си в виде проволоки (рис. 4, в) содержит Br (от 10.11 до 22.36%), Pb (8.78%) и Ta (1.63%).

Существенно меняются состав и форма рудных микрокомпонентов в золе-уноса (рис. 5). Электронно-микрозондовым анализом обнаружены Au, Ag, Cu, сплавы Zn и Cu, Pb и Sn. Золото (рис. 5, а, б) представлено в форме чешуек (рис. 5, а) размером 12×7 мкм с содержанием 57.61% и примесями Sn (17.42%), Cu (6.65%), Pb (4.58%). Также золото встречается в виде круглой (окатанной) формы (рис. 5, б) диаметром 123 мкм с содержа-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 1 2023

нием 76.88% и примесью Al (7.36%) и Cu (1.16%). Серебро (рис. 5, в) присутствует в виде микросферы с содержанием 70.56% с примесью S (6.60%), I (2.86%), Br (1.90%), Cu (1.11%). Сплавы представлены Zn и Cu (рис. 5, г), Pb и Sn (рис. 5, д). Агломераты сложены зернами пирита (рис. 5, е) с примесями Br (5.25%), Ca (3.18%), Al (1.87%), Zn (0.25%).

В шламе (рис. 6) установлены гематит (рис. 6, а), ильменит (рис. 6, б), геденбергит (рис. 6, в). Они встречаются в виде расплавленных частиц и микросфер размером от 40 до 120 мкм простой тексту-

СОРОКИН и др.

Рис. 6. Гематит (а), ильменит (б), геденбергит (в), сплавы: Pb–Sn (г), (д), Cu–Zn (е) в шламе продуктов сгорания Райчихинского месторождения.

ры. Ильменит (рис. 6, б) содержит примеси Al (4.13%), Ca (3.42%), Mn (3.21%) и Mg (1.59%). Сплав Pb и Sn установлен в виде застывших капель размером от 70 (рис. 6, г) до 2400 мкм (рис. 6, д), а сплав Cu и Zn (рис. 6, е) — древовидной формы (30–150 мкм). На поверхности сплава Cu и Zn присутствует налет железа Fe (42.55%).

2.3. Содержание и распределение элементов в углях и ПСУ Райчихинского месторождения. Проанализировано распределение в углях и ПСУ редких металлов, в том числе: редкоземельных (REY), рассеянных (PPЭ), включая тугоплавкие (PTЭ), радиоактивных (PЭ) элементов, а также цветных тяжелых и легких (ЦМ) и благородных металлов (БМ). Также было рассчитано содержание этих элементов в ПСУ. Расчет проводился по формуле: $C_{ncy} = ((C_{up} \cdot M_{up}) + (C_{sp} \cdot M_{sp}) + (C_{un.op} \cdot M_{un.op}) + (C_{up.op} \cdot M_{un.op}) + (C_{up.op} \cdot M_{up.op}) + (C_{spp} \cdot M_{sp}))/M_{ncy}, где C_{ncy} - содержание в ПСУ, С_{шр} – содержание в шлаках, <math>C_{3p}$ – содержание в золе-уноса, $C_{un.op}$ и $C_{un.op}$ – содержание в шламах, $C_{втр}$ – масса ПСУ, M_{up} – масса шлаков, M_{3p} – масса золы-уноса, $M_{un.op}$ и $M_{un.op}$ – масса шлаков, $M_{втр}$ – масса техногенной воды.

Для описания распределения REY использовалась геохимическая классификация, разделяющая REY на легкие (*L*REY – La, Ce, Pr, Nd, Sm), средние (*M*REY – Eu, Gd, Tb, Dy, Y) и тяжелые (*H*REY – Ho, Er, Tm, Yb и Lu). В этом порядке концентрации REY в исследованных образцах углей и ПСУ приведены в табл. 1.

Анализ распределения REY показывает, что в углях содержание этих элементов существенно не превышает кларки. Возрастание их отмечается в золе-уноса с максимумами 1083.49 и 1018.99 г/т в двух секциях золоуловителя. Далее наблюдается понижение их значений с небольшим повышением до 593.45 г/т в шламе фильтрации. При этом в золе-уноса содержания целого ряда REY (Y, La, Ce, Nd, Sm, Yb и др.) превышают кларки в 10– 20 раз. В целом для распределения REY в ПСУ очевиден тренд повышенных содержаний в виде двух пиков (рис. 7).

Уровень высоких концентраций REY в золеуноса составляет — 9.23%, в шламе — 1.46% при 86.46% в топочном шлаке от общей суммы содержаний REY в продуктах сгорания (табл. 2).

Содержание редких рассеянных, тугоплавких и радиоактивных элементов в углях и ПСУ приведено в табл. 3. Распределение тугоплавких элементов в целом схоже с распределением радиоактивных элементов (рис. 8). Наибольшие содержания их характерны для золы-уноса первой (РТЭ 388.30 г/т, РЭ 42.54 г/т) и второй (РТЭ 369.66 г/т, РЭ 41.47 г/т) секций. Также присутствует небольшой пик содержаний в шламе фильтра отстойника (РТЭ 249.83 г/т, РЭ 31.37 г/т) (табл. 4). Распре-

Элемент	УР (+10)	ШР (+10)	ШР (—10)	3P-1	3P-2	3P-3	ШЛ.ОР	ШЛ.ФР	BTP	3CP	ПСУ	Кларк*
La	13.90	66.09	130.16	217.30	205.01	87.61	47.28	103.62	57.10	50.78	112.25	10.00
Ce	28.57	123.63	228.91	392.20	364.24	173.68	105.67	210.75	109.51	106.66	200.71	22.00
Pr	3.06	11.89	22.69	39.21	36.48	16.93	10.75	19.88	10.76	10.52	19.78	3.50
Nd	11.74	44.81	82.88	140.58	131.43	65.52	42.46	78.55	41.11	39.68	72.68	11.00
Sm	2.33	8.31	15.37	26.04	24.33	12.43	8.73	15.79	7.60	7.65	13.50	1.90
LREY	59.61	254.72	480.02	815.33	761.49	356.17	214.87	428.58	226.08	215.29	418.92	—
Y	14.23	56.99	104.50	169.33	162.88	72.76	53.11	92.24	58.76	43.30	91.43	8.60
Eu	0.46	1.56	3.01	5.12	4.84	2.32	1.60	3.07	1.42	1.42	2.62	0.50
Gd	2.72	9.96	19.01	31.84	30.02	14.80	10.36	18.91	10.11	9.01	16.57	2.60
Tb	0.37	1.37	2.51	4.16	3.93	1.93	1.39	2.55	1.32	1.23	2.20	0.32
Dy	2.18	8.25	14.27	23.41	22.33	10.90	8.22	14.88	7.70	7.36	12.68	2.00
MREY	19.97	78.13	143.29	233.86	223.99	102.72	74.67	131.64	79.30	62.31	125.50	—
Но	0.45	1.74	2.90	4.73	4.59	2.18	1.70	3.02	1.62	1.44	2.60	0.50
Er	1.40	5.40	8.79	14.04	13.60	6.52	5.20	9.16	4.76	4.35	7.91	0.85
Tm	0.20	0.78	1.19	1.88	1.85	0.88	0.73	1.28	0.61	0.62	1.09	0.31
Yb	1.35	5.13	7.57	11.90	11.72	5.59	4.72	8.36	3.69	4.14	6.96	1.00
Lu	0.21	0.78	1.14	1.74	1.75	0.83	0.71	1.25	0.56	0.61	1.05	0.19
HREY	3.61	13.83	21.60	34.30	33.51	16.00	13.07	23.08	11.24	11.17	19.61	—
∑REY	83.19	346.68	644.90	1083.49	1018.99	474.89	302.61	583.30	316.62	288.77	564.03	—

Таблица 1. Содержание REY в углях центральной части Райчихинского месторождения и продуктах его сгорания, г/т

*Значение кларка по М.П. Кетрис и Я.Е. Юдович [31] (*L*REY – легкие, *M*REY – средние, *H*REY – тяжелые редкоземельные элементы).

деление редких рассеянных элементов несколько отличается от приведенных. Наибольшие их содержания выявлены в шлаке (РРЭ 270.36 г/т) и в шламе фильтра отстойника (РРЭ 249.83 г/т).

Тяжелые (ТЦМ) и легкие (ЛЦМ) цветные металлы отличаются различным типом распределения в ПСУ (рис. 9). В продуктах сгорания для ТЦМ характерно последовательное повышение содержаний в шлаке (от 233.85 г/т), резко переходящих в высокие, начиная с золы-уноса третьей секции (3249.90 г/т) и достигая пика в шламе отстойника. ЛЦМ имеют несколько другой тип распределения. Наибольшие содержания обнаружены в золе-уноса первой (5425.92 г/т) и второй секций (5362.79 г/т). Начиная с золы третьей секции (2072.22 г/т), установлено понижение содержаний ЛЦМ, с небольшим пиком в шламе фильтра (3269.70 г/т). Стоит отдельно отметить резко выделяющиеся высокие содержания Zn (1891.96 г/т) и Ва (2122.56 г/т) в техногенной воде.

Содержание ЦМ в шлаке составляет 86.20%, в золе-уноса и шламе уменьшается, соответственно, до 10.20 и 3.60%. Значения ЦМ (г/т) возрастают до 3109.10 – в шлаке, до 6672.00 – в золе-уноса и 7362.24 – в шламе (табл. 6). Содержания благородных металлов показывают последовательное повышение по мере движения газового потока. Наиболее высокие содержания благородных металлов в ПСУ отмечаются в шламе (табл. 7, рис. 10).

2.4. Критерии оценки углей Райчихинского месторождения и продуктов их сгорания как сырья для редкоземельных элементов. Для оценки сырья для REY принята промышленная классификация, основанная на прогнозах о соотношении спроса и предложений отдельных элементов [32]. На основании этой классификации REY делятся на критические (Nd, Eu, Tb, Dy, Y и Er), некритические (La, Pr, Sm и Gd) и избыточные (Ce, Ho, Tm Yb и Lu) элементы. Исходя из этого, богатые руды REY должны сдержать высокие концентрации критических и минимальное количество избыточных элементов. С учетом указанных критериев, для первичной оценки качества редкоземельных руд используется соотношение относительного количества критических элементов к сумме REY к относительному количеству избыточных к сумме REY [1]. Этот показатель назван коэффициентом перспективности и рассчитывается по формуле: $K\Pi(C_{outl}) = (Nd + Eu + Tb + Dy +$ + Er + Y / Σ REY) / (Ce + Ho + Tm + Yb + Lu / Σ REY). Очевидно, что чем выше этот коэффици-

Рис. 7. Распределение REY в углях центральной части Райчихинского месторождения и продуктах его сгорания.

Рис. 8. Распределение редких рассеянных, тугоплавких и радиоактивных элементов в продуктах сгорания углей центральной части Райчихинского месторождения.

ент, тем перспективнее руда REY с точки зрения потенциальной промышленной ценности.

Для предварительной оценки угольной золы в качестве сырья REY в последние годы учитываются не только количество, но индивидуальные их составы. Для золы с повышенными концентрациями REY, как отмечалось выше, выделяются три схемы распределения REY: *L*REY – $(La_N/Lu_N > 1)$, *M*REY – $(La_N/Sm_N < 1, Gd_N/Lu_N > 1)$ и *H*REY – $(La_N/Lu_N < 1)$. L-тип характеризует богатые руды с высоким выходом золы (15–50%) и мощностью пластов от 0.6 до 26.7 м. Содержание

REO в угольной золе колеблется от 0.11 до 0.23%, КП(C_{outl}) от 0.5 до 0.9, а отношение La_N/Lu_N − от 1.1 до 2.9. Аномальное содержание REY с L-типом терригенного или туфогенного происхождения формируется на стадии торфяной залежи. М-тип, по целому ряду месторождений угля Китая, Дальнего Востока России и других стран, характеризуется выходом золы от 9 до 32%, с мощностью пластов угля от 0.54 до 16.5 м. Содержание REO в угольной золе колеблется от 0.1 до 0.6%, а КП(C_{outl}) – в пределах 0.8–1.3%. Распределение REY H-типа (La_N/Lu_N < 1) присуще богатым угольным золам. Зольность углей 1–4%, мощность паста угля 0.4–6.0 м, содержание REO – 0.1–1.0%, КП(C_{outl}) – от 0.9 до 3.8, La_N/Lu_N – 0.1–0.9.

В целом по Райчихинскому месторождению концентраци REY составляет по углю 83.19 г/т, по золе – 1028.09–1083.49 г/т, REY \leq 0.11%, КП(C_{outl}) – 0.53.

Распределение REY и КП(C_{outl}) в углях рассмотрено на шести участках месторождения по отдельным горизонтам угольного пласта (табл. 8, 9). В центральной части месторождения на участках "Северо-восточный центральный 1 и 2" повышенные концентрации REY (92.47–217.44 г/т) со значениями КП(C_{outl}) до 0.47 приурочены к нижним частям пласта угля (табл. 8). В разрезах на участке "Северо-восточный центральный 1" в средних горизонтах пласта установлено три прослоя туфов (тонштейнов). В сопряженных с ними углях отмечено возрастание КП(C_{outl}) от 0.67 до 0.71.

Существенно отличаются показатели рудоносности углей на южной окраине Райчихинского месторождения (табл. 9). В пределах участков "Вятка" и "Широкий" пласты угля пониженной мощности, но имеют наиболее высокие содержания REY (782.05–1830.04 г/т), приуроченные к верхним горизонтам угольного пласта. В тоже время, эти угли отличаются несколько пониженными значениями КП(C_{outl}).

В среднем по месторождению $K\Pi(C_{outl})$ составил 0.49, a REY – 32.15%. По показателю КП(C_{out}) оно соответствует классу бесперспективных $(K\Pi(C_{outl}) \le 0.7)$, а по REY (32.15%) — подходит под класс перспективных (30% ≤ REY ≤ 51). Райчихинское буроугольное месторождение отнесено к переходному типу перспективности. Ресурс месторождения может быть повышен за счет возможности извлечения, совместно с REY, редких. цветных и благородных металлов (Be, Sc, V, Ga, Sb, Cs, Mo, W, Pb, Au, Ag, Pt и Re), которые при определенных условиях, по мнению целого ряда исследователей [1, 3, 7, 33, 34], обладают повышенным потенциалом экономического извлечения в качестве побочных продуктов из углей и золы.

Таблица 2. Среднее весовое и процентное содержания REY и их распределение в углях центральной части Райчихинского месторождения и продуктах его сгорания

Уголь	Bec,	Среднее содер	эжание,	Распределение						
ПСУ	КГ	г/т	%%	вес, г	%%					
Уголь	200.00	83.19	0.01	16.64	100.00					
Шлак										
ШР+10	9.50	346.68	0.03	3.29	19.79					
ШР-10	17.20	644.90	0.06	11.09	66.67					
Всего:	26.70	538.79	0.05	14.39	86.46					
Зола-уноса										
3P-1	0.87	1083.49	0.11	0.94	5.67					
3P-2	0.57	1018.99	0.10	0.58	3.49					
3P-3	0.03	474.89	0.05	0.01	0.07					
Всего:	1.46	1051.60	0.11	1.54	9.23					
		Шлам								
ШЛ.ОР	0.09	302.61	0.03	0.03	0.16					
ШЛ.ФР	0.38	583.30	0.06	0.22	1.34					
Всего:	0.47	531.34	0.05	0.25	1.50					
BTP	0.09	316.62	0.03	0.03	0.17					
3CP	0.33	288.77	0.03	0.10	0.58					
	Неустановленные потери 2.06									

Рассмотренные критерии оценки угля и ПСУ как сырья редкоземельных элементов основаны на прогнозе современного спроса и предложений. В то же время уровень содержаний промышленно ценных элементов может оцениваться и с учетом близости минеральной матрицы угля или угольной золы к микроэлементному составу промышленных типов руд, используя при этом максимальные промышленные содержания в рудах [33, 35–37]. Это, в первую очередь, касается редких, редкоземельных, цветных, благородных и радиоактивных металлов. Например, исследования вышеприведенных авторов позволяют определять минимально-промышленные содержания для REY (при зольности 10-20%) в золе – ΣTR₂O₃ – 400 г/т, а углях – 340 г/т. При таком же пороге зольности минимальные промышленные содержания, соответственно, составляют (г/т): для Cu – 100 и 10–20; Zn – 500 и 50–100; Мо 100 и 10–20; Ад и Аu – в золе 0.2–10 и 0.1.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Формирование металлоносных угленосных отложений восточного Приамурья на рубеже мела и палеогена происходило в обстановке крупных динамических преобразований, связанных с

	VP(+10)			Сод	ержание	в ПСУ				ПОУ	V HOPV*
Элемент	УР (+10)	ШР (+10)	ШР (-10)	3P-1	3P-2	3P-3	ШЛ.ОР	ШЛ.ФР	BTP	псу	Кларк*
			Редкие	е рассеян	ные элем	иенты (Р	РЭ)				
Rb	18.64	132.60	38.03	30.82	31.80	16.98	9.46	24.62	6.84	68.61	10.00
Ga	12.15	37.90	27.95	36.45	38.80	19.94	23.33	41.21	1.41	31.79	5.50
Ge	3.42	2.69	8.89	19.13	20.99	28.27	23.27	40.10	4.09	7.84	2.00
Hf	1.42	5.00	4.97	7.30	7.21	2.66	1.35	5.22	0.20	5.07	1.20
V	40.02	92.17	72.70	99.48	93.69	43.73	38.51	87.54	3.72	80.23	22.00
Se	0.61	< 0.001	1.04	2.22	6.44	15.94	42.41	51.14	1.40	1.63	1.00
∑РРЭ	76.26	270.36	153.58	195.40	198.93	127.52	138.33	249.83	17.66	195.17	_
Редкие тугоплавкие элементы (РТЭ)											
Cr	30.39	54.24	39.77	64.42	54.58	47.47	163.10	80.14	11.25	46.40	15.00
Zr	59.35	199.02	193.30	279.09	270.58	97.07	44.53	176.76	6.09	198.04	35.00
Nb	8.56	20.38	16.71	22.62	23.08	7.37	3.93	14.22	0.47	18.10	2.20
Mo	1.10	4.03	7.04	14.00	12.40	22.70	37.11	29.75	3.52	6.74	3.30
Та	0.41	1.63	1.22	1.65	1.70	0.45	0.26	0.89	< 0.001	1.37	0.26
W	0.91	4.32	6.60	6.52	7.32	11.93	5.70	8.77	5.70	5.88	1.20
ΣРТЭ	100.72	283.62	264.64	388.30	369.66	186.99	254.63	310.53	27.03	276.53	-
			Редкие	радиоакт	гивные э.	лементы	(PЭ)				
Th	5.48	18.34	21.30	33.33	32.59	12.00	10.17	25.49	0.75	20.86	3.3
U	1.50	4.94	5.98	9.21	8.88	3.72	2.67	5.88	1.96	5.77	2.9
ΣРЭ	6.98	23.28	27.28	42.54	41.47	15.72	12.84	31.37	2.71	26.63	_

Таблица 3. Содержание редких рассеянных, тугоплавких и радиоактивных элементов в углях центральной части Райчихинского месторождения и продуктах его сгорания, г/т

*Значение кларка по М.П. Кетрис и Я.Е. Юдович [31].

неотектоническим этапом развития региона. Они выражались в блоковых перемещениях в пределах Туранского массива при колебательном типе движений на восточной окраине Зейско-Буреинского осадочного бассейна. В зоне контрастного сопряжения Бурейского поднятия и Куприяно-Райчихинского предгорного прогиба это привело к резкому усилению эрозии области сноса с размывом кор выветривания каолинового типа. Бы-

Таблица 4. Среднее весовое и процентное содержание редких рассеянных, тугоплавких и радиоактивных элементов в продуктах сгорания углей центральной части Райчихинского месторождения

	Содержание в ПСУ									
Элемент	шлак		зола-у	носа	шла	всего				
	г/т	%	г/т	%	г/т	%	%			
РРЭ	195.00	89.60	195.61	7.80	229.19	0.26	100			
РТЭ	271.30	89.90	377.62	6.90	300.18	3.20	100			
РЭ	25.70	91.10	41.67	5.30	27.94	3.60	100			
ΣPM	492.00	92.00	614.90	6.20	556.55	1.80	100			

ли вскрыты и переотложены коренные источники редкоземельных, рассеянных, цветных и благородных металлов, основной объем которых в составе терригенных осадков последовательно перемещался в раннем кайнозое по палео-Бурее вплоть до выхода на Зейско-Бурейскую равнину с локализацией в пролювиально-аллювиальных и озерно-болотных отложениях дельты реки.

Процесс миграции рудных компонентов был многостадийным, обусловленный многократными проявлениями тектонической активности региона, что приводило к частому смещению палео-Буреи, переуглублению русла реки, многократному перемыву осадков, в котором значительная роль принадлежала наводнениям. Чередование режимов повышенной активности и стабилизации зоны сопряжения в системе поднятие-бассейн обусловили так же изменчивость палеографических условий в дельте палео-Буреи: эпизодическому возникновению и последующему размыву торфяных массивов, а также неравномерному обогащению рудными микрокомпонентами озерно-болотных отложений.

Эломонт	УР			Co	цержание	вПСУ				псу	V TOPY*
Элемент	(+10)	ШР(+10)	ШР (-10)	3P-1	3P-2	3P-3	ШЛ.ОР	ШЛ.ФР	BTP	псу	кларк
			Тя	желые цв	етные ме	таллы (Т	ЦМ)				
Со	5.45	30.20	51.30	82.15	76.67	35.54	48.06	35.70	34.08	45.48	4.20
Ni	48.57	70.70	86.92	127.72	115.43	74.38	164.82	95.30	163.05	83.91	9.00
Cu	19.86	43.43	44.99	68.61	57.94	99.55	812.88	488.52	286.21	54.25	15.00
Zn	44.97	77.58	152.40	314.40	387.78	696.63	971.21	885.92	1891.96	155.05	18.00
Sn	1.85	2.67	3.54	6.55	9.03	11.38	27.26	32.89	0.36	3.90	0.79
Sb	0.30	0.65	2.97	8.61	7.72	19.62	46.92	45.27	0.57	3.16	0.84
Hg	0.04	0.24	0.42	0.48	0.46	0.79	0.71	0.69	0.39	0.37	0.10
Pb	14.53	8.38	174.55	714.32	596.21	2312.01	3694.80	2600.54	78.50	187.40	6.60
∑ТЦМ	135.57	233.85	517.09	1322.84	1251.24	3249.90	5766.66	4184.83	2455.12	533.51	-
			Л	егкие цве	тные мет	аллы (ЛІ	ĮΜ)				
Li	6.40	23.17	20.54	27.22	28.65	10.64	5.12	17.98	6.18	21.65	10.00
Be	1.89	7.70	14.13	20.70	20.88	7.76	5.00	10.88	5.95	12.24	1.20
Sr	106.62	372.08	775.23	1293.48	1233.24	427.45	190.77	508.50	581.05	660.62	120.00
Cs	2.60	16.73	4.98	3.63	3.66	1.91	1.05	2.60	0.73	8.74	4.11
Ba	312.61	1413.45	2353.20	4080.89	4076.36	1624.46	987.64	2729.74	147.14	2122.56	150
∑ЛЦМ	430.12	1833.13	3168.08	5425.92	5362.79	2072.22	1189.58	3269.70	741.05	2825.81	-
			•	Благоро,	цные мет	аллы (БМ	[)			•	
Ag	0.57	2.01	0.93	2.40	1.84	2.57	1.16	3.18	0.47	-	0.90

Таблица 5. Содержание цветных и благородных металлов в углях центральной части Райчихинского месторождения и продуктах его сгорания, г/т

*Значение кларка по М.П. Кетрис и Я.Е. Юдович [31].

Характеризуя в целом Райчихинское месторождение (по крупнообъемной пробе), можно отметить преобладание в углях (г/т) *L*REY (52.61) при пониженных значениях *M*REY (19.97) и низких *H*REY (3.61). Среди них критические элементы составляют 30.01 г/т при близких концентрациях избыточных (30.58 г/т). При этом в углях и ПСУ отмечается преобладание лантаноидов цериевой группы (La_N/Yb_N), которое изменяется от 7.10 до 12.60. В диаграмме хондрит-нормализованных содержаний лантаноидов в углях и ПСУ четко выражена отрицательная аномалия Eu, характерная для магматических пород кислого состава, что подтверждает связь REY с гранитоидами Бурейского поднятия (рис. 11).

Общие параметры редкоземельной минерализации пласта "Верхний" Райчихинского месторождения были детализированы с учетом опробования разреза, включая вмещающие породы. Существенные различия концентраций REY в углях и породах вскрыши во многом связаны с различиями в составе органического материала, образованного на месте и привнесенного в процессе катастрофических наводнений [38, 39]. В центральной части месторождения REY обогащены метровые интервалы угля в почве пласта с содержанием 92–217 г/т, реже — в кровле (до 77.31 г/т) с концентрациями REY 15.98–233.11 г/т. В средней части разреза пласта с содержанием REY в туфах до 38.95 г/т резко повышается значение КП(C_{outl}), что, по-видимому, связано с понижением содержания избыточных элементов в углях.

На окраине месторождения резко повышен фон металлоносности углей на участке "Вятка". Значение REY здесь колеблется от 607.69 до 1830.04 г/т с наиболее обогащенными интервалами углей в кровле и почве пласта. При этом в

Таблица 6. Среднее весовое и процентное содержание ЦМ в продуктах сгорания углей центральной части Райчихинского месторождения

5	Содержание в ПСУ									
етал	шла	к	зола-у	носа	шла	всего				
Σ	Г/Т	%	Г/Т	%	Г/Т	%	%			
ТЦМ	416.30	65.30	1327.87	11.60	4477.64	23.10	100			
ЛЦМ	2692.80	87.40	5344.13	9.50	2884.60	3.10	100			
∑ЦМ	3109.10	86.20	6672.00	10.20	7362.24	3.60	100			

Рис. 9. Распределение цветных металлов в углях центральной части Райчихинского месторождения и продуктах его сгорания.

кровле, по-видимому, значительная роль в обогащении углей связана с туфами, в которых REY составляет 802.55 г/т.

Распределение других элементов в ПСУ более разнообразное. Редкие рассеянные (Rb, Ga, Ce, Hf, V, Se), тугоплавкие (Cr, Zr, Nb, Mo, Ta, W) и радиоактивные (Th, U) концентрируются, как и лантаноиды, преимущественно в золе-уноса в количестве от 5.30 до 7.8%. Цветные металлы преобладают в двух фракциях: тяжелые цветные (Co, Ni, Cu, Zn, Sn, Sb, Hg, Pb) наиболее распространены в шламе (23.10%) и золе-уноса (11.60%), а легкие (Li, Be, Sr, Cs, Ba) – в золе-уноса (9.50%) и шламе (3.10%). Благородные металлы (Au, Ag) концентрируются в основном в золе-уноса, соответственно, в количествах 6.20 и 8.10%. Оценивая

Таблица 7. Среднее весовое и процентное содержание БМ в продуктах сгорания углей центральной части Райчихинского месторождения

	Содержание Аи и Ад в ПСУ									
Металл	шлак		зола-	уноса	ШЛ	всего				
	Г/Т	%	Г/Т	%	Г/Т	%	%			
Au*	0.22	90.40	0.31	6.20	0.47	3.40	100			
Ag	1.30	88.60	2.19	8.10	2.81	3.30	100			
ΣБМ	1.52	88.60	2.50	8.00	3.28	3.40	100			

* Определение Au выполнено в пробирной лаборатории Института геологии и природопользования ДВО РАН. условия накопления вышеприведенных рудных компонентов в ПСУ Райчихинского месторождения, следует отметить, что наиболее продуктивной фракцией локализации этих рудных микрокомпонентов служит зола-уноса.

В схеме современных генетических типов обогащения REY угольных бассейнов [1] райчихинские угли можно отнести к двум типам: терригенному и комбинированному - терригенно-вулканогенному. Терригенный тип формировался на стадии торфяной залежи с поступлением REY поверхностными водами системы р. Бурея. Транспортировка их осуществлялась в ионном виде, коллоидах, а также в форме обломков горных пород и минералов. До 70% обломков пород представлены гранитоидами кислого состава Бурейского поднятия (рис. 11). Минеральные разновидности из питающих провинций Бурейского поднятия (касситерит, вольфрамит, золото, антимонит, висмутин, циркон, ксенотим, фергюсонит) присутствуют в углях и ПСУ. Подвижные формы REY (до 90%) связаны с органическим веществом [40].

В комбинированном терригенно-вулканогенном типе REY поступали в основном на стадии формирования торфяника в обстановке вулканической деятельности в сопредельном Сихотэ-Алинском орогенном поясе, что приводило к периодическому привносу пирокластики, обогащенной REY. В дальнейшем, в процессе диагенеза, происходило выщелачивание редкоземельных

Рис. 10. Распределение Аи и Ад в продуктах сгорания углей центральной части Райчихинского месторождения.

элементов из туфов (тонштейнов) с обогащением соседних горизонтов угля [12].

Взаимодействие растворенных микроэлементов с органической средой и механизмы их накопления опираются на результаты совместных исследований [41–43]. Н.Г. Куимова и соавт. на основании изучения низинного торфа р. Зея (Приамурье) установила, что концентратором и носителем золота в торфяной залежи являются гуминовые кислоты, накапливающие до 70% от его общего содержания, а 30% — в негидролизуемой части органического вещества. Была установлена возможность восстановления ионного золота до элементного состояния размерностью 200—600 нм с последующим отложением его в виде пленок и агломератов.

Гаолица 6. Характеристика углей в центральной части Р	аичихинского месторождения

"Севе	у ро-восточ	^и часток иный центральный	1"	Участок "Северо-восточный центральный 2"					
Севе	ро-восто-	пый цептральный	1						
мощность, м	порода	сумма REY, г/т	$K\Pi(C_{outl})$	мощность, м	порода	сумма REY, г/т	$K\Pi(C_{outI})$		
0.5	Глина	34.95	0.56	3.0	Песок	115.98	0.53		
0.5	Уголь	39.60	0.66	1.5	Глина	233.11	0.41		
0.5	Туф	38.95	0.63	0.4	Уголь	77.31	0.62		
0.5	Уголь	38.13	0.50	0.4	Уголь	24.57	0.53		
0.5	Уголь	24.42	0.58	0.4	Уголь	25.48	0.34		
0.5	Туф	23.63	0.50	0.5	Туф	23.51	0.39		
0.5	Уголь	10.42	0.67	0.4	Уголь	23.56	0.42		
0.5	Уголь	13.06	0.70	0.5	Уголь	14.03	0.50		
0.5	Уголь	36.63	0.42	0.4	Уголь	26.08	0.40		
0.5	Туф	35.03	0.51	0.4	Уголь	15.08	0.45		
0.5	Уголь	16.98	0.65	0.5	Уголь	35.29	0.46		
0.5	Уголь	44.64	0.47	0.5	Уголь	27.64	0.47		
0.5	Уголь	92.47	0.47	0.3	Уголь	217.44	0.33		
0.5	Глина	97.02	0.63	0.4	Уголь	135.37	0.45		

СОРОКИН и др.

· 1	1	5	1		1 , ,			
	Участок "В	ятка", точка 20		Участок "Широкий 2", точка 1				
мощность, м	порода	сумма REY, г/т	$K\Pi(C_{outl})$	мощность, м	порода	сумма REY, г/т	КП(C _{outl})	
1.0	Глина	339.52	0.46	1.5	Уголь	77.20	0.47	
0.2	Орг в-во	713.93	0.61	0.5	Туф	21.19	0.47	
0.2	Глина	936.57	0.53	0.5	Уголь	41.77	0.50	
0.6	Уголь	726.77	0.46	0.5	Уголь	45.42	0.51	
0.6	Уголь	745.69	0.40	0.5	Уголь	32.14	0.41	
0.6	Уголь	607.79	0.46	Участок "Широкий 2", точка 2				
0.5	Глина	111.09	0.45	0.5	Уголь	782.05	0.68	
	Участок "В	ятка", точка 21		0.5	Уголь	118.03	0.37	
1.5	Глина	477.98	0.48	0.5	Уголь	91.46	0.42	
0.5	Уголь	1830.04	0.57	0.5	Уголь	41.34	0.54	
0.05	Туф	802.55	0.41				<u>.</u>	
0.5	Уголь	132.59	0.46					
0.5	Уголь	383.13	0.42					

Таблица 9. Характеристика углей на южной окраине Райчихинского месторождения

Л.М. Павловой и соавт. [42] изучена сорбция химических элементов из многокомпонентных растворов биомассой микроскопических грибов. Установлено, что максимальным извлечением (85–100%) всеми штаммами грибов из разбавленных растворов обладают преимущественно Bi, Sn, Pb, Hg, Fe, а из концентрированных – Bi, Sn, Fe, Pb, Cr, Sb (75–100%). В меньшей мере (до 50%) извлекаются Mn, Co, As, Sr, Ni, меньше Cu, V, Cd, Zn (из растворов с высокой концентрацией), Sb и Se (из растворов с низкой концентрацией элементов). В последующей работе [43] с исследованиями сорбции элементов-примесей компонентами бурых углей показано, что на начальной стадии биомасса микроскопических грибов, за счет полного обмена, хелатирования и восстановительных реакций, способна фиксировать значительные объемы элементов, поступающих с кис-

Рис. 11. Диаграмма хондрит-нормализованных содержаний REY в углях Райчихинского месторождения и продуктах его сгорания.

лыми дренирующими растворами. В результате этого могут образоваться нуль-валентные частицы. В дальнейшем существенную роль в сорбции элементов начинают играть гуминовые кислоты, которые за счет ионного обмена могут фиксировать большие количества Cu, Cr, Zn, Co, Ni, Pb и Fe, но с образованием органоминеральных соединений. Это позволяет считать, что на буроугольной стадии, в отличие от торфяной, сорбируется гораздо меньше элементов в основном по механизму межмолекулярных взаимодействий.

При рассмотрении эволюции форм нахождения лантаноидов в процессе углеобразования С.И. Арбузовым и соавт. [18] было установлено, что на стадии торфообразования преобладают подвижные формы органических соединений, а минеральная составляющая присутствует в виде устойчивых редкоземельных элементов. На буроугольной стадии также доминируют органические соединения лантаноидов хелатного типа при второстепенной роли минеральных форм. Последующие преобразования органического вещества в процессе углефикации, по мнению этих исследователей, приводят к образованию аутигенных минералов.

Перспективы вовлечения в освоение углей и золы угольных месторождений, подобных Райчихинскому, во много зависят от экономической конъюнктуры этого вида сырья. V. Seredin и S. Dai [1] отмечают, что существующие цены на REY при мощности угольных пластов более 5 м могут быть пригодны для селективной отработки с содержанием REY 800–900 г/т, а в золе – при REY≥1000 г/т. При этом следует иметь в виду, что среднее суммарное содержание REY в углях мира, основанное на средней индивидуальной концентрации лантаноидов и иттрия [31], оценивается (г/т): в 65.5, в углях США – 62.1 [44], а Китая – 137.9 [45]. В то же время среднемировые концентрации REY в угольной золе составляют 404 г/т, что сопоставимо с некоторыми рудами коренных месторождений редкоземельного сырья.

Учитывая это, ранее указанные исследователи предлагают установить минимально промышленный порог для REY в углях и золе определенным уровнем зольности. В частности, при зольности угля 10-20%, присущей Ерковецкому, Райчихинскому и Архаро-Богучанскому месторождениям Приамурья, минимально-промышленные содержания ΣTR_2O_3 могут быть определены (г/т): для золы – 400, а для угля – 340. Также вполне приемлемо для освоения выглядят содержания ряда цветных, редких и благородных металлов. Учитывая, что они концентрируются в золе-уноса, можно разрабатывать условия их извлечения из угольных месторождений, соответственно, с REY. Указанный методический подход оценки промышленно-ценных микроэлементов апробирован при исследовании металлоносных углей Дальнего Востока. С учетом ранее приведенных материалов они показывают ориентиры, нацеленные на создание на востоке России минерально-сырьевой базы редкоземельных, редких, цветных и других ценных металлов, связанных с угленосными отложениями.

Значительная часть дальневосточных месторождений и проявлений редкоземельной минерализации расположена в пределах Цзямусы-Буреинского и Ханкайского континентальных массивов Центрально-Азиатского складчатого пояса или в зонах его сопряжения в эрозионно-тектонических депрессиях (прогибах). Континентальные массивы – это глубоко эродированные структуры, неоднократно переживавшие периоды стабилизации с формированием в мезозое кор выветривания химического типа. Примером их может служить месторождение Лонгнан (КНР). Производные рудопроявления такого типа, связанные с размывом кор выветривания, развиты и в угольных бассейнах Приморья и Приамурья [1, 13, 20, 46]. На российской территории в пределах этих массивов можно прогнозировать редкоземельную минерализацию в корах выветривания и продуктах их переотложения (бурые угли и вмещающие породы), терригенного, терригенновулканогенного комбинированного, инфильтрационного типов с наложенными низкотермальными процессами, с нисходящими и восходящими потоками подземных вод.

выводы

1. Проведенные исследования показали тесную связь питающих провинций Бурейского поднятия и областей угленакопления Зейско-Буреинского осадочного бассейна. Накопление рудных микрокомпонентов происходило на торфяной стадии с привносом вулканического пепла с прилегающей к поясу территории Приамурья. Эти события обусловили наличие двух типов обогащения райчихинских углей REY: терригенного, связанного с поступлением рудных микрокомпонентов с поверхностными водами, и комбинированного - терригенно-вулканогенного - с привносом акцессорных минералов вулканитов. Установлено, что лантаноиды в продуктах сгорания доминируют в золе-уноса и частично в шламе, а цветные и благородные металлы – наращивают минерализацию преимущественно в шламе.

2. На ранней стадии формирования торфяной залежи процессы накопления рудных микрокомпонентов проходили по двум направлениям: с локализацией кластогенно-минеральных форм за счет привноса в водной среде и сорбции элементов биомассой из рудных растворов. На основании экспериментальных исследований установлено, что биомасса (в частности, микроскопические грибы из современных торфов) на начальной стадии может фиксировать значительное количество элементов, поступающих с кислыми растворами. В дальнейшем существенная роль в сорбции элементов принадлежит гуминовым кислотам.

3. Оценка REY райчихинских углей исследована на участках по отдельным горизонтам пласта. Установлено, что в центре месторождения отмечается три горизонта с повышенными значениями коэффициента перспективности: верхний и нижний — за счет общих повышенных значений REY, средний — обогащенный тяжелыми REY, по-видимому, из тонштейнов. На южной окраине месторождения при уменьшении мощности пласта в его кровле отмечаются наиболее высокие значения REY.

4. Оценка рудоносности райчихинских углей определяется также возможностью извлечения ряда редких, цветных и благородных металлов в качестве побочных продуктов. Наряду с этим за-служивает внимание более детальное изучение выделенных перспективных горизонтов пород кровли и подошвы.

БЛАГОДАРНОСТИ

Авторы выражают благодарность А.В. Штареву и В.Е. Зазулину (ИТиГ ДВО РАН, г. Хабаровск) – за проведение измерений содержания металлов в твердых объектах методом ИСП-МС, В.О. Крутиковой (ИТиГ ДВО РАН, г. Хабаровск) – за проведение микрозондовых исследований, А.С. Сегреневу (ИГиП ДВО РАН, г. Благовещенск) – за выполнение аналитических работ по определению химического состава углей, Е.Н. Воропаевой (ИГиП ДВО РАН, г. Благовещенск) — за минералогические исследования фракций угля и ПСУ, В.Н. Борисову (ИГиП ДВО РАН, г. Благовещенск) — за выполнение опытных работ по выделению из углей минеральных фракций; Е.А. Копчинской (ИГиП ДВО РАН, г. Благовещенск) – за определение общего и органического углерода в углях, Т.В. Артеменко (ИГиП ДВО РАН, г. Благовещенск) – за участие в построении минерагенической схемы и Т.В. Дехнич (ИГиП ДВО РАН, г. Благовещенск) — за оформление статьи.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда № 22-27-00116, https://rscf.ru/project/22-27-00116/.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Seredin V.V., Dai S.* // Int. J. Coal Geology. 2012. V. 94. P. 67.
- 2. *Кременецкий А.А., Архипова Н.А.* // Разведка и охрана недр. 2012. № 9. С. 83.

- Dai S., Finkelman R.B. // Int. J. Coal Geology. 2018. V. 186. P. 155.
- 4. *Кременецкий А.А., Калиш Е.А.* // Разведка и охрана недр. 2014. № 9. С. 3.
- 5. Seredin V.V. // Int. J. Coal Geology. 1996. V. 30. P. 101.
- 6. Середин В.В. // Геология рудных месторождений. 2004. Т. 46. № 1. С. 43. [Geology of Ore Deposits, 2004. V. 46. № 1. Р. 36.]
- Seredin V.V., Finkelman R.B. // Int. J. Coal Geology. 2008. V. 76. P. 253.
- Сорокин А.П., Чантурия В.А., Рождествина В.И., Кузьминых В.М., Жмодик С.М. // ДАН. 2012. Т. 446. № 6. С. 672. [Doklady Earth Sciences, 2012. V. 446. № 2. Р. 1215. https://doi.org/10.1134/S1028334X12100182].
- 9. Сорокин А.П., Сорокина А.Т., Каплун В.Б., Рождествина В.И., Попов А.А., Артеменко Т.В. // Тихоокеанская геология. 2017. Т. 36. № 5. С. 3. [Russian Journal of Pacific Geology, 2017. V. 11, №. Р. 315. https://doi.org/10.1134/S1819714017050050]
- Сорокин А.П., Белозеров Н.И., Попов А.А. // Тихоокеанская геология. 2021.Т. 40. № 5. С. 33. [Russian Journal of Pacific Geology, 2021. V. 15. № 5. Р. 417. https://doi.org/10.1134/S1819714021050092]. https://doi.org/10.30911/0207-4028-2021-40-5-33-43
- Кузеванова Е.В. Металлоносность углей кайнозойских буроугольных месторождений Приморья: автореф. дис. канд. геол.-минер. наук. СПб: ВСЕГЕИ, 2014. 26 с.
- Arbuzov S.I., Mezhibor A.M., Ilenok S.S., Shaldybin M.V., Belaya E.V., Spears D.A. // Int. J. Coal Geology. 2016. V. 153. P. 99.
- Arbuzov S.I., Ilenok S.S., Soktoev B.R., Chekryzhov I.Y., Popov N.Y., Spears D.A. // Ore Geology Reviews. 2021. V. 139. P. 104537.
- 14. *Середин В.В.* // Доклады Академии наук СССР. 1991. Т. 320. № 6. С. 1446.
- 15. Арбузов С.И., Кикина Е.В., Чекрыжов И.Ю., Блохин М.Г., Иванов В.В., Зарубина Н.В., Sun Y.Zh., Zhao C.L. // Комплексное использование потенциала каменных и бурых углей и создание комбинированных экологически безопасных технологий их освоения, 19–22 сент. 2017 г., Благовещенск: [сб. докл.]. Благовещенск: АмурНЦ ДВО РАН, 2017. С. 95–99.
- 16. Вялов В.И., Кузеванова Е.В., Нелюбов П.А., Змиевский Ю.П., Ключарев Д.С. // Разведка и охрана недр. 2010. № 12. С. 53.
- Seredin V.V., Dai S., Sun Y., Chekryzhov I.Yu. // Appl. Geochem. 2013. V. 31. P. 1.
- Арбузов С.И., Финкельман Р.Б., Ильенок С.С., Маслов С.Г., Межибор А.М., Блохин М.Г. // ХТТ. 2019.
 № 1. С. 3–25. [Solid Fuel Chemistry, 2019. V. 53. № 1.
 Р. 1. https://doi.org/10.3103/S0361521919010026]. https://doi.org/10.1134/S002311771901002X
- Arbuzov S.I., Ilenok S.S., Ivanov V.P., Spears D.A., Chekryzhov I.Y. // Ore Geology Reviews. 2021. V. 132. P. 103986.
- 20. Чекрыжов И.Ю., Нечаев В.П., Трач Г.Н., Трач Д.А. Горный журнал. 2018. № 2. С. 35.

- 21. *Рождествина В.И., Сорокин А.П.* // Тихоокеанская геология. 2010. Т. 29. № 6. С. 26. [Russian Journal of Pacific Geology, 2010. V. 15. № 5. Р. 417. https://doi.org/10.1134/S1819714010060035].
- Сорокин А.П., Рождествина В.И., Кузьминых В.М., Жмодик С.М., Аношин Г.Н., Митькин В.Н. // Геология и геофизика. 2013. Т. 54. № 7. С. 876. [Russian Geology and Geophysics, 2013. V. 54. № 7. Р. 671. https://doi.org/10.1016/j.rgg.2013.06.003].
- Васильев И.А., Капанин В.П., Ковтонюк Г.П., Мельников В.Д., Лужнов В.Л., Данилов А.П., Сорокин А.П. Минерально-сырьевая база Амурской области на рубеже веков. Благовещенск: ПКИ "Зея", 2000. 168 с.
- Эйриш Л.В. Металлогения золота Приамурья (Амурская область, Россия). Владивосток: Дальнаука, 2002. 194 с.
- Вьюнов Д.Л. Прогнозно-геохимическая оценка металлоносности Верхнего Приамурья: Дис. ... канд. геол.-минерал. наук: Благовещенск: Амур. комплекс. НИИ ДВО РАН, 2005. 102 с.
- Волкова Ю.Р., Щадрина Н.И., Петрук Н.Н. Карта полезных ископаемых. 1: 1000000. Лист М-52 (Благовещенск). Дальневосточная серия. СПб: Картфка ВСЕГЕИ, 2012.
- Сорокин А.П., Конюшок А.А. // ДАН. 2018. Т. 483. № 6. С. 662. [Doklady Earth Sciences, 2018. V. 483. № 2. Р. 1571. https://doi.org/10.1134/S1028334X18120218]. https://doi.org/10.31857/S086956520003452-0
- Сорокин А.П., Чантурия В.А., Агеев О.А., Дугин С.В. // XTT. 2020. № 4. С. 8-20. [Solid Fuel Chemistry, 2020. V. 54. № 4. Р. 196. https://doi.org/10.3103/S0361521920040072]. https://doi.org/10.31857/S0023117720040076
- 29. Сорокин А.П., Агеев О.А. Устройство для получения разделенных продуктов сгорания углей. Пат. 2699642 РФ // Б.И. 2019. № 25. С. 9.
- Шпирт М.Я. Безотходная технология. Утилизация отходов добычи и переработки твердых горючих ископаемых. М.: Недра, 1986. 255 с.
- 31. *Ketris M.P., Yudovich Y.E.* // Int. J. Coal Geology. 2009. V. 78. P. 135.
- Kingsnorth D.J. An Overview of the Rare Earth Market. IMCOA. 2009. http://www.ggg.gl/userfiles/file/Reports/GGG%20-Annual%20Report/202009.pdf.
- Неженский И.А., Вялов В.И., Мирхалевская Н.В., Чернышев А.А. // Региональная геология и металлогения. 2013. 54. С. 99.

- 34. Вялов В.И., Богомолов А.Х., Шишов Е.П., Чернышев А.А. // Георесурсы. 2017. Спецвыпуск. Ч. 2. С. 256.
- 35. Вялов В.И., Ларичев А.И., Кузеванова Е.В., Богомолов А.Х., Гамов М.И. // Региональная геология и металлогения. 2012. № 51. С. 96.
- 36. Вялов В.И., Неженский И.А., Балахонова А.С., Шишов Е.П. // Разведка и охрана недр. 2014. № 9. С. 18.
- 37. Вялов В.И., Наставкин А.В. // ХТТ. 2019. № 5. С. 63. [Solid Fuel Chemistry, 2019. V. 53. № 5. Р. 314. https://doi.org/10.3103/S0361521919050112]. https://doi.org/10.1134/S0023117719050116
- 38. Sorokin A.P., Konyushok A.A., Kuz'minykh V.M., Dugin S.V. // Minerals. 2021. V. 11. P. 682.
- 39. Сорокин А.П., Носкова Л.П. // XTT. 2021. № 6. С. 3. [Solid Fuel Chemistry, 2021. V. 55. № 6. Р. 357. https://doi.org/10.3103/S0361521921060136]. https://doi.org/10.31857/S002311772106013X
- 40. Радомская В.И., Шумилова Л.П., Носкова Л.П., Сорокин А.П., Павлова Л.М., Иванов В.В. // ХТТ. 2023. № 1. С. 22. [Solid Fuel Chemistry, 2023. V. 57. № 1. Р. 20. https://doi.org/10.3103/S0361521923010068]. https://doi.org/ 10.31857/S0023117723010061
- Куимова Н.Г., Павлова Л.М., Сорокин А.П., Носкова Л.П., Сергеева А.Г. // Литосфера. 2011. № 4. С. 131.
- 42. Павлова Л.М., Шумилова Л.П., Радомская В.И., Сорокин А.П., Иванов В.В. // ДАН. 2019. Т. 488. № 4. С. 425 [Doklady Earth Sciences, 2019. V. 488. № 2. Р. 1178. https://doi.org/10.1134/S1028334X19100088]. https://doi.org/10.31857/S0869-56524884425-428
- 43. Павлова Л.М., Радомская В.И., Шумилова Л.П., Сорокин А.П., Радомский С.М. // ДАН. 2020. Т. 492. № 2. С. 57. [Doklady Earth Sciences, 2020. V. 492. № 2. Р. 438. https://doi.org/10.1134/S1028334X20060148]. https://doi.org/10.31857/S2686739720060146
- 44. *Finkelman R.B.* // Organic geochemistry / Eds. M.H. Engel, S. Masco.– New York: Plenum. 1993. P. 593.
- 45. Dai S. Li D., Chou C.-L., Zhao L., Zhang Y., Ren D., Ma Y., Sun Y. // Int. J. Coal Geology. 2008. V. 74. P. 185.
- 46. Сорокин А.П., Конюшок А.А., Кузьминых В.М., Артеменко Т.В., Попов А.А. // Геотектоника. 2019. № 2. С. 33. [Geotecton, 2019. V. 53. № 2. Р. 193. https://doi.org/10.1134/S0016852119020092]. https://doi.org/10.31857/S0016-853X2019233-45