УДК (66.092-977+66.092.097):662.65

ИССЛЕДОВАНИЕ ТЕРМИЧЕСКИХ ПРЕВРАЩЕНИЙ НИЗКОМЕТАМОРФИЗОВАННЫХ КУЗБАССКИХ УГЛЕЙ В РАЗЛИЧНЫХ СРЕДАХ И ПРОГНОЗИРОВАНИЕ ИХ ГИДРИРУЕМОСТИ В ПРОЦЕССАХ ПРЯМОГО ОЖИЖЕНИЯ

© 2021 г. К. Ю. Ушаков^{1,*}, И. Я. Петров^{2,**}, А. Р. Богомолов^{1,3,***}

¹ Кузбасский государственный технический университет имени Т.Ф. Горбачева, 650000 Кемерово, Россия

² Институт углехимии и химического материаловедения Федерального исследовательского центра угля и углехимии СО РАН, 650000 Кемерово, Россия

³ Институт теплофизики имени С.С. Кутателадзе СО РАН, 630090 Новосибирск, Россия

*e-mail: ushakovkju@kuzstu.ru **e-mail: ipetrov@kemcity.ru ***e-mail: barom@kuzstu.ru Поступила в редакцию 17.12.2020 г. После доработки 06.02.2021 г. Принята к публикации 06.04.2021 г.

Проведено сопоставление выходов "угольных жидкостей" (мальтенов и асфальтенов), образующихся при термообработке в среде водорода трех низкометаморфизованных кузбасских углей, с различными параметрами их гидрируемости. Показано, что атомные отношения H/C, выходы летучих веществ, величины относительной максимальной скорости пиролиза углей в интервале $300-500^{\circ}$ С и отношения алифатических и ароматических структур [$(D_{2920} + D_{2860})/D_{1600}$] в исследуемых углях линейно возрастают параллельно с увеличением выходов жидких продуктов в ряду: караканский длиннопламенный уголь < итатский бурый уголь < барзасский сапромиксит. Наилучшая корреляция (R = 0.9792) наблюдалась между выходами жидких продуктов и отношениями [$(D_{2920} + D_{2860})/D_{1600}$]. Исследованы процессы термических превращений двух видов барзасских сапромикситов [плитчатой модификации ("плитки") и продукта ее выветривания ("рогожки")] в различных средах (H_2 и CO₂); установлено, что при термообработке барзасских сапромикситов в атмосфере водорода наблюдался более высокий выход "угольных жидкостей" по сравнению с аналогичным показателем их термоконверсии в углекислотной среде; при этом в ходе термообработки в среде водорода плитчатой формы барзасского угля выход "угольных жидкостей" (~37.7 мас. %) был более чем в 1.5 раза выше, а выход газов (~10.3 мас. %) более чем в 2 раза ниже, чем в аналогичных экспериментах с "рогожкой".

Ключевые слова: низкометаморфизованные угли Кузбасса, термообработка, "угольные жидкости", гидрируемость углей, термический анализ, водород, диоксид углерода **DOI:** 10.31857/S0023117721040083

ВВЕДЕНИЕ

Обостряющиеся экологические требования к энергетическому сырью в развитых странах Европы и Азии, наряду с активным поиском альтернативных источников энергии, станут одними из основных факторов снижения мирового потребления угля в ближайшем будущем [1]. Опасные перспективы значительного уменьшения добычи угля вследствие снижения спроса на него как на сырье для энергетического сектора могут привести в Кузбассе к крайне негативным экономическим и социальным последствиям. Экономически выгодным вариантом решения данной проблемы является широкое внедрение в регионе комплексных технологий масштабной переработки угля в жидкие товарные продукты (моторные топлива, ценные химические соединения), пользующиеся спросом на мировом и внутреннем рынках. Успешному внедрению таких технологий (в частности, процессов прямого ожижения угля [2–6]) способствует наличие на территории Кузбасса значительных запасов низкометаморфизованных и высокозольных углей, которые не пригодны для использования в металлургии и при этом характеризуются сравнительно невысокой теплотой сгорания, что ограничивает их применение в энергетике. Во многих отношениях процессы прямого ожижения углей тесно связа-

Образец угля	Технический анализ, мас. %			Элементный анализ, мас. % на daf				
	W^{a}	A^d	V^{daf}	С	Н	Ν	S	0*
Барзасский сапромиксит ("рогожка")	3.1	29.2	69.6	81.71	8.73	0.47	0.89	8.20
Барзасский сапромиксит ("плитка")	1.7	14.8	54.6	82.33	8.64	0.60	1.32	7.11
Итатский бурый уголь	12.1	15.8	52.4	80.48	6.26	1.03	0.89	11.34
Караканский длиннопламенный уголь	7.7	13.6	41.3	81.39	5.84	2.22	0.42	10.13

Таблица 1. Характеристики исследуемых образцов кузбасских углей

*По разности.

ны с их пиролизом; в частности, у прямого ожижения и пиролиза есть идентичный начальный этап – термическое образование радикалов в ходе гомолитического разрыва химических связей в структуре угля [7–9]. В связи с этим для более глубокого понимания химизма процессов прямого ожижения и более эффективного применения этих технологий на практике необходимо исследовать поведение угольного вещества при его термообработке в различных средах, что даст ценную информацию об основных закономерностях образования продуктов превращений углей в зависимости от основных технологических параметров процесса. Согласно [6], для обеспечения высокой эффективности процесса прямого ожижения углей желательно применять угли, содержащие 65-85% углерода, ≥5% водорода (массовое соотношение С/Н не выше 16–17), ≥30% летучих веществ в пересчете на органическую массу при содержании золы не более 5.5% для каменных и ≤10% для бурых углей и при содержании фюзенизированных микрокомпонентов до 15% и влажности до 12%. Среди углей, встречающихся в пределах Кузнецкого угольного бассейна, перечисленным требованиям отвечают следующие виды низкометаморфизованных твердых топлив: 1) барзасские сапромикситы [их наиболее распространенной формой является плитчатая модификация ("плитка") и продукт ее выветривания ("рогожка")]; 2) бурые угли итатского месторождения; 3) длиннопламенные угли разреза Караканский-Западный.

В настоящей работе проведена оценка возможности получения жидких продуктов путем термообработки образцов этих низкометаморфизованных твердых топлив как в восстановительной (H_2), так и в относительно нейтральной (CO_2) средах, а также предприняты попытки выявления достаточно универсальных и сравнительно легко определяемых параметров гидрируемости указанных углей с целью прогнозирования их реакционной способности и термического поведения в процессах их ожижения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Основные характеристики исследуемых кузбасских углей (данные технического и элементного анализов) представлены в табл. 1. Технический анализ углей проводился с использованием стандартных методов [10], а их элементный анализ — с помощью элементного анализатора *Flash* 2000 (*Thermo Fisher Scientific*, США).

Дериватограммы (кривые TG, DTA и DTG) исследуемых углей в инертной среде (атмосфере гелия) были получены на дериватографе O-1500D(Венгрия), конструкция которого была модифицирована путем добавления модуля АЦП І-7018Р (ICP DAS, Тайвань), для аналого-цифрового преобразования сигналов T, TG, DTA и DTG с последующей их регистрацией на персональном компьютере с использованием программы SIMP Light (SIMP Light SCADA, Россия) и окончательной математической обработкой полученных данных с помощью программного комплекса Origin Pro (OriginLab, США). Навеска образца составляла ~200 мг; скорость нагрева – ~10°С/мин; расход He – ~400 см³/мин; в качестве образца сравнения использовался прокаленный при 1200°С α-оксид алюминия.

Для проведения экспериментов по термообработке исследуемых углей в атмосферах СО₂ и H₂ были приготовлены фракции измельченных и просеянных частиц кузбасских углей размером ~1-3 мм. Данные эксперименты проводились при температуре ~ 475°C в интервале конечных давлений газовой среды от 7.0 до 9.0 МПа (продолжительность термообработки – 20 мин) с использованием микроавтоклава объемом ~20 см³ (более подробно детали экспериментов приведены в работах [11, 12]). В ходе термической обработки исследуемых углей под высоким давлением газовой среды обычно образуются три основных типа продуктов: 1) газообразные продукты; 2) твердые продукты, содержащие смолу; 3) небольшие количества (около 3–5 мас. %) жидких продуктов, представляющих собой водные растворы органических веществ (последние иногда появлялись после термообработки барзасских сапромикситов при 475°С). Выходы продуктов термообработки углей определялись в пересчете на 1 г органической массы конвертируемого угля (ОМУ):

$$Y_{g} = [(m_{c} - m_{s} - m_{w})/m_{c}] \times 100/[100 - W^{a} - A^{d}/100];$$

$$Y_{w} = [m_{w}/m_{c}] \times 100/[100 - W^{a} - A^{d}/100];$$

$$Y_{m} = [m_{m}/m_{c}] \times 100/[100 - W^{a} - A^{d}/100];$$

$$Y_{a} = [m_{a}/m_{c}] \times 100/[100 - W^{a} - A^{d}/100],$$

где Y_g , Y_w , Y_m и Y_a — выходы газов, водной фазы, мальтенов (веществ, растворимых в *н*-гексане) и асфальтенов (веществ, растворимых в бензоле, но не растворимых в *н*-гексане) в пересчете на сухую беззольную массу (OMУ или *daf*), мас. % соответственно; A^d и W^a — содержания золы и влаги в угольном сырье, мас. % соответственно; m_c , m_w , m_s , m_m и m_a — количества угольного сырья, водной фазы, твердых смолосодержащих продуктов, мальтенов и асфальтенов соответственно. Эффективность процесса ожижения угля (выход "угольных жидкостей") определялась как сумма выходов мальтенов и асфальтенов, мас. % (в пересчете на OMУ или *daf*).

Количество образовавшихся "угольных жидкостей" (мальтенов и асфальтенов), присутствующих в содержащих смолу твердых продуктах, определялось путем их последовательной экстракции в аппарате Сокслета с использованием слегка модифицированной методики, которая обычно применяется при анализе смолистых веществ в нефтях и нефтепродуктах [13]. В качестве экстрагентов использовались химически чистый *н*-гексан (для выделения мальтенов), а затем аналитически чистый бензол (для разделения асфальтенов и неэкстрагируемых остатков). Предварительно было установлено, что в исходных углях мальтены и асфальтены отсутствовали.

Согласно [14], процесс пиролиза углей достаточно удовлетворительно описывается кинетикой реакции первого порядка. Расчет энергий активации процессов разложения исследуемых углей в интервале температур 350–550°С по данным термического анализа проводился методом Ингрэма—Мариера [15] с использованием логарифмической формы кинетического уравнения зависимости скорости потери массы образца от температуры. Согласно [15], для реакций первого порядка

$$\log(dw/dT) = \log T - \log a + \log C - E/2.303RT.(1)$$

Отсюда энергии активации процессов разложения углей могут быть вычислены из зависимостей $[\log(dw/dT) - \log T + \log a]$ от 1/T, которые можно также представить в виде зависимостей $\log[(a/T)(dw/dT)]$ от 1/T. На полученных дериватограммах выбирались линейные участки потери массы образцов углей (кривые *TG*) в области температур их наиболее интенсивного пиролиза (300–500°С). Скорость изменения массы образца угля в определенном температурном интервале при линейном повышении температуры (dw/dT) на линейном участке кривой *TG* является величиной, пропорциональной потере массы этого образца, т.е. можно считать, что для линейного участка кривой *TG*: $dw/dT = \text{const}\Delta w$, где Δw – потеря массы при соответствующей температуре *T*; а const можно считать коэффициентом пропорциональности *b*. Следовательно, выражение (1) для линейного участка кривой *TG* можно записать в виде уравнения:

$$\log[(a \cdot b \cdot \Delta w/T)] = \log C - E/2.303RT.$$
 (2)

Так как все эксперименты проводились при постоянной скорости нагрева образцов углей (a = 10 K/мин), то величину $\log(a \cdot b)$ выражении (2) можно считать постоянной, поэтому уравнение (2) может быть представлено в виде

$$\log(\Delta w/T) = \log C - \log(a \cdot b) - E/2.303RT,$$

которое после замены разности постоянных величин $[\log C - \log(a \cdot b)]$ на $\log C'$ можно записать как

$$\log(\Delta w/T) = \log C - E/2.303RT.$$

Таким образом, строя график линейной зависимости логарифма отношения потери массы образца угля при температуре T к значению этой температуры $[log(\Delta w/T)]$ от 1/T, получаем прямую линию, из тангенса угла наклона которой можно легко вычислить значение энергии активации процесса разложения угля (E); эти результаты приведены в табл. 2.

ИКФП-спектры образцов углей регистрировались на ИКФП-спектрометре "Инфралюм" (Сименс, Россия) в спектральном диапазоне 500— 4000 см⁻¹; при записи спектров была использована методика прессования образцов углей с бромистым калием. Отнесение полос поглощения в ИКФП-спектрах к различным функциональным группам проводилось в соответствии с литературными данными [16].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для предварительной оценки возможности использования углей в процессах гидрогенизационной переработки активно применяются методы термического анализа, которые позволяют определить температурные интервалы и последовательность стадий термического разложения углей, оценить прочность в них химических связей [17–23]. Как показано в работе [21], в ряде случаев важной характеристикой гидрируемости углей может служить величина относительной макси-

Исследуемый уголь	Атомное отношение H/C	Выход летучих веществ, V ^{daf} , мас. %	[(1/m _o) <i>dm/dT</i>], (1/г _{обр.}) · мг/°С	$(D_{2920} + D_{2860})/D_{1600}$	$E_{ m a}^{350-550},$ кДж/моль
Барзасский сапромиксит ("рогожка")	1.28	69.6	1.99	1.34	142.60
Барзасский сапромиксит ("плитка")	1.26	54.6	2.22	1.95	215.15
Итатский бурый уголь	0.93	52.4	0.85	0.68	37.83
Караканский ллиннопламенный уголь	0.86	41.3	0.74	0.32	74 85

Таблица 2. Значения различных параметров гидрируемости и энергий активации пиролиза для исследуемых углей

мальной скорости пиролиза углей, т.е. скорости максимальной потери их массы на 1 г угля в среде в интервале 300-500°C инертной $[(1/m_{o})dm/dT]$, значение которой также коррелирует с выходом жидких продуктов в процессе гидрирования углей. На дериватограммах, записанных для исследуемых углей, (рис. 1, а–г) можно выделить три основные области термического разложения: 1) 20-25-150-170°С (удаление адсорбированной воды), 2) 300-500°С (стадия первичного или быстрого пиролиза) и 3) >500-600°C (стадия вторичного или медленного пиролиза). Такая картина в целом характерна для процессов неизотермического пиролиза твердых топлив [19, 21, 22]. Рассчитанные из полученных дериватограмм значения относительных скоростей пиролиза исследуемых кузбасских углей в интервале 300-500°С, [(1/m_o)dm/dT], приведены в табл. 2, из которой следует, что данные значения возрастают в ряду: караканский длиннопламенный уголь < < итатский бурый уголь < барзасский сапромиксит. Применение термического анализа в инертной среде позволяет также определить кинетические параметры процессов термических превращений углей, в частности энергию активации пиролиза (см. табл. 2). Стоит отметить, что значения энергий активации для итатского бурого угля и караканского длиннопламенного угля оказались меньше аналогичных величин, полученных для двух модификаций барзасского сапромиксита. Однако следует учесть, что максимальные скорости разложения итатского и караканского углей фиксировались при более низких температурах (соответственно 397 и 393°С) по сравнению с температурами термораспада (454 и 485°С) барзасских углей (рис. 1, кривые DTG), т.е. для разложения углей требовались меньшие затраты энергии. В свою очередь, более низкотемпературные максимумы скоростей разложения итатского и караканского углей (по сравнению с барзасскими углями), по-видимому, обусловлены более низким содержанием кислорода в органической массе сапромикситов (табл. 1) и, следовательно,

более высокой долей относительно слабых (по сравнению с углерод-углеродными) углерод-кислородных связей в итатском и караканском углях. Согласно [8, 23], энергии образования эфирных С–О-связей имеют более низкие значения по сравнению с энергиями образования других типов связей, таких как связи С–С; в результате чего эфирные связи разрываются раньше, чем происходит разрыв метиленовых связей [8, 24]. Данное обстоятельство (т.е. более высокое содержание С–О-связей), по-видимому, также объясняет и более низкие значения энергий активации, наблюдаемые при разложении итатского и караканского углей по сравнению с аналогичными значениями для барзасских сапромикситов.

Известно [22, 25], что стадия первичного пиролиза твердых топлив в температурном интервале ~ 300-500°С связана в основном с термораспадом алифатических структур в углях. Поскольку алифатические структуры легко идентифицируются в ИК-спектрах поглощения углей (в виде полос поглощения валентных колебаний СН₃- и СН₂-групп в диапазонах волновых чисел 2840-2860 см⁻¹ и 2960-2920 см⁻¹ [16]), то относительное содержание этих структур в исследуемых углях (оцениваемое по данным ИК-спектров) может служить дополнительным независимым параметром, характеризующим гидрируемость углей, наряду со значениями относительных максимальных скоростей пиролиза этих углей в интервале 300-500°С. В частности, удобным параметром для такой оценки может быть отношение суммы оптических плотностей ИК-полос поглощения валентных С-Н-колебаний алкильных групп ($D_{2920} + D_{2860}$) к оптической плотности ИКполосы поглощения при ~1600-1630 см⁻¹, относящейся к валентным колебаниям С = С-связей ароматических колец (D_{1600}), т.е. отношение (D_{2920} + $+ D_{2860})/D_{1600}$, которое по своему физическому смыслу отражает соотношение алифатических и ароматических структур в исследуемых углях. С целью проверки этого предположения были за-

Рис. 1. Дериватограммы кузбасских углей в инертной среде (гелий): (а) – выветренный плитчатый барзасский сапромиксит ("рогожка"); (б) – плитчатый барзасский сапромиксит ("плитка"); (в) – итатский бурый уголь; (г) – караканский длиннопламенный уголь.

писаны ИКФП-спектры исследуемых углей (рис. 2, а-г).

Основные группы полос ИК-поглощения кузбасских углей, связанные с валентными колебаниями С-Н-и С-С-связей алифатических и ароматических структур, проявляются в следующих частотных диапазонах [16]: 3080-3020 см⁻¹ (валентные колебания ароматических С-Н-групп); 2960-2920 см⁻¹ с максимумом около 2947 см⁻¹ (валентные колебания метиленовых С-Н-связей СН₂-групп и асимметричные валентные колебания С-Н-связей СН₃-групп); 2880-2840 см⁻¹ (симметричные валентные колебания групп СН₃); интенсивная полоса поглощения при ~ 1600 см⁻¹ (валентные колебания ароматических групп С=С), частично перекрывающиеся с полосой поглощения деформационных (ножничных) колебаний воды (δ_{H-O-H}), проявляющейся в области 1650-1630 см⁻¹; группа полос поглощения в диапазоне 700-900 см⁻¹, которые связаны с внеплоскостными колебаниями связей С-Н ароматических колец.

Как следует из данных табл. 2, рассчитанные значения отношений $(D_{2920} + D_{2860})/D_{1600}$ для исследуемых углей возрастали в том же порядке, что и величины относительных скоростей пиролиза этих углей в интервале 300–550°С [$(1/m_0)dm/dT$]: караканский длиннопламенный уголь < итатский бурый уголь < барзасский сапромиксит.

Данные по выходам продуктов термических превращений низкометаморфизованных углей Кузбасса, полученные в среде водорода, а также аналогичные показатели для двух исследуемых форм барзасского угля в различных средах, представлены на рис. 3, а, б.

Как видно из рис. 3, а, наибольший выход жидких продуктов (мальтенов + асфальтенов) среди исследуемых твердых топлив наблюдался для барзасского угля. Количество "угольных жидкостей", образующихся в процессе превращений итатского и караканского углей при выбранных условиях гидроконверсии, было крайне незначительным (<1 мас. %), а основными продуктами термопревращений этих материалов были преимущественно газообразные соединения (рис. 3, а).

Рис. 2. Типичные ИКФП-спектры исходных кузбасских углей: (а) – плитчатый барзасский уголь ("плитка"); (б) – выветренный плитчатый барзасский уголь ("рогожка"); (в) – итатский бурый уголь; (г) – караканский длиннопламенный уголь.

Рис. 3. Выходы продуктов термических превращений углей: (а) – в зависимости от природы кузбасских углей в атмосфере водорода ($T \sim 475^{\circ}$ C; $P_{H_2} \sim 7-9$ МПа; $t \sim 20$ мин); (б) – в зависимости от среды термообработки двух различных форм барзасских углей ($T \sim 475^{\circ}$ C; $P \sim 7-9$ МПа; $t \sim 20$ мин) [выходы продуктов даны в пересчете на ОМУ (органическую массу углей)].

Следует отметить, что при термообработке барзасских сапромикситов в среде водорода наблюдался более высокий выход "угольных жидкостей" (мальтенов и асфальтенов), по сравнению с углекислотной средой (рис. 3, б), причем при термообработке плитчатой формы барзасского угля в

Рис. 4. Корреляции выходов жидких продуктов (в пересчете на ОМУ) при термообработке кузбасских углей в среде H_2 ($T \sim 475^{\circ}$ C; $P_{H_2} \sim 7-9$ МПа; $t \sim 20$ мин): (a) -1 - c выходами летучих веществ; 2 - c атомными отношениями H/C в этих углях; (б) -1 - c относительными максимальными скоростями пиролиза кузбасских углей в интервале 300– 500°C; 2 - c отношениями оптических плотностей ИК-полос поглощения алифатических и ароматических структур $[(D_{2920} + D_{2860})/D_{1600}]$ в этих материалах.

среде водорода выход этих продуктов (37.7 мас. %) был более чем в 1.5 раза выше, а выход газов (10.3 мас. %) более чем в 2 раза ниже, чем в аналогичных экспериментах с "рогожкой" (рис. 3, б). Водородная среда, как известно [26], способствует увеличению степени превращения углей по сравнению с их конверсией при аналогичных условиях в среде инертных газов, что указывает на то, что газообразный водород участвует в реакциях превращений угля даже в отсутствие водорододонорного растворителя или катализатора. Ранее [11, 12] было обнаружено, что с ростом температуры термообработки барзасских углей относительная интенсивность поглощения алкильных групп в мальтенах снижается, но в асфальтенах она возрастает, что является характерным для конверсии сапромикситов как в углекислотной, так и в водородной средах. Подобное изменение распределения алкильных групп может быть связано как с переносом водорода от мальтенов к асфальтенам, так и с отщеплением водородосодержащих структур от мальтенов с последующим переходом в газовую фазу. Если считать основной причиной наблюдаемого эффекта первое объяснение, то мальтены, образующиеся при бессольвентной термообработке сапромиксита, можно рассматривать как водорододонорный растворитель, водород которого расходуется для гидрирования асфальтенов в продуктах превращения барзасского угля. В пользу такого объяснения свидетельствует и тот факт, что, согласно литературным данным [27–29], при ожижении углей в

присутствии растворителей-доноров водорода растворитель вносит гораздо больше собственного водорода в гидрирование угля и значительно более эффективен при конверсии угля, чем газообразный H₂.

Считается [6, 21, 30, 31], что наиболее надежными показателями способности угольного сырья к гидрированию и ожижению являются соотношение в нем углерода и водорода (атомное отношение Н/С) и значения выхода летучих веществ (V^{daf}) в ожижаемом твердом топливе; с увеличением данных параметров реакционная способность углей в процессе их гидроожижения возрастает. В настоящей работе было проведено сопоставление значений выходов "угольных жидкостей" (мальтенов + асфальтенов), полученных при термообработке исследуемых кузбасских углей в среде водорода, как с известными параметрами их гидрируемости [атомными отношениями H/C и выходами летучих веществ (V^{daf})], так и с величинами { $[(1/m_o)dm/dT]$ и $(D_{2920} + D_{2860})/D_{1600}$ }, рассчитанными для данных материалов по результатам настоящего исследования. Все перечисленные параметры гидрируемости приведены в табл. 2, а результаты проведенных сопоставлений – на рис. 4, а, б. Известные параметры гидрируемости исследуемых углей (H/C и V^{daf}) изменялись в той же последовательности, что предложенные параметры {[$(1/m_{o}) \cdot dm/dT$] и ($D_{2920} + D_{2860}$)/ D_{1600} }: караканский длиннопламенный уголь < итатский бурый уголь < барзасский сапромиксит. Ясно, что чем выше отношение $(D_{2920} + D_{2860})/D_{1600}$ для данного конкретного угля, тем больше в этом угле алифатических структур по сравнению с ароматическими и тем выше атомное отношение H/C (поскольку алифатические структуры содержат больше водорода, чем ароматические). Вследствие этого становится понятным, почему параметры $(D_{2920} + D_{2860})/D_{1600}$ и H/C хорошо коррелируют с выходами жидких продуктов (см. рис. 4, а, б), поскольку известно [21, 30–35], что угли, содержащие большее количество водорода и алифатических структур, значительно легче гидрируются и дают больший выход жидких продуктов при термообработке в водородной среде и/или в присутствии водородонорного растворителя.

Термодеструкция алифатических структур, представленных в углях в основном линейными углеводородными цепями и/или циклическими насыщенными кольцами, протекает более интенсивно и обычно при более низких температурах (~350-550°С), по сравнению с термораспадом ароматических структур углей (>500-600°С) [36]. Следовательно, можно ожидать, что барзасские угли, содержащие больше водорода и больше алифатических структур, по сравнению с итатским и караканским углями, будут давать больший выход летучих веществ (V^{daf}) и иметь более высокие значения относительных скоростей разложения в интервале $350-550^{\circ}$ С [($1/m_{o}$)dm/dT], чем итатский и караканский угли, что в целом подтверждается экспериментально (см. табл. 2).

Анализ полученных данных показывает, что очень хорошие корреляции наблюдаются у выходов жидких продуктов, полученных при термообработке низкометаморфизованных кузбасских углей, с относительными максимальными скоростями пиролиза данных углей в интервале температур 300–500°С (коэффициент корреляции R == 0.9673) и, особенно, с отношениями оптических плотностей ИК-полос поглощения алифатических и ароматических структур (R = 0.9792) в этих исходных материалах (рис. 4, б). Несколько менее удовлетворительные линейные зависимости отмечаются между выходами жидких продуктов и значениями атомных отношений Н/С кузбасских углей (R = 0.9088), а наименее приемлемая корреляция наблюдалась между выходами "угольных жидкостей" и выходами летучих веществ (R = 0.5124) в исследуемых углях (рис. 4, а). Неудовлетворительная корреляционная зависимость в случае использования в качестве параметра гидрируемости углей выхода летучих веществ (V^{daf}) , вероятно, объясняется тем фактом, что, помимо жидких продуктов, значительный вклад в значения V^{daf} дают также различные газообразные продукты, которые образуются в ходе проведения стандартного анализа определения данно-го показателя.

Таким образом, рассмотренные в данной работе параметры $[(1/m_0) \cdot dm/dT]$ и $[(D_{2920} + D_{2860})/D_{1600}]$ наряду со значениями атомных отношений H/C для исследуемых углей вполне могут быть использованы для экспресс-оценки возможности применения низкометаморфизованных углей в качестве сырья для процессов гидрирования и ожижения, а также для характеристики реакционной способности этих твердых топлив.

ЗАКЛЮЧЕНИЕ

Изучена возможность получения жидких продуктов в процессах термообработки в различных средах (Н₂ и CO₂) трех низкометаморфизованных углей Кузбасса: барзасских сапромикситов [плитчатой модификации ("плитки") и продукта ее выветривания ("рогожки")], бурых углей итатского месторождения и длиннопламенных углей разреза Караканский-Западный. Наибольший выход "угольных жидкостей" (мальтенов и асфальтенов) среди исследуемых твердых топлив был получен для барзасских углей. Выходы жидких продуктов в процессе превращений итатского и караканского углей при выбранных условиях гидроконверсии ($T \sim 475^{\circ}$ C; $P_{H_2} \sim 7-9$ МПа; $t \sim 20$ мин) были крайне низкими (< 1 мас. %). При термообработке барзасских сапромикситов в среде водорода наблюдался более высокий выход "угольных жидкостей" (мальтенов и асфальтенов) по сравнению с углекислотной средой. причем при термообработке плитчатой формы барзасского угля в атмосфере водорода выход этих продуктов (37.7 мас. %) был почти в 1.5 раза выше, а выход газов (10.3 мас. %) более чем в 2 раза ниже, чем в аналогичных экспериментах с "рогожкой".

Анализ корреляционных зависимостей между выходами "угольных жидкостей" (мальтенов и асфальтенов) при термопревращениях исследуемых углей Кузбасса и значениями их различных параметров гидрируемости {атомное отношение Н/С, выход летучих веществ, величина относительной максимальной скорости пиролиза углей в интервале 300—500°С [величина $(1/m_o) \cdot dm/dT$, получаемая из данных термического анализа] и относительное содержание в них алифатических структур [отношения ($D_{2920} + D_{2860}$)/ D_{1600}] по данным ИКФП-спектроскопии} показал, что наилучшая корреляция (R = 0.9792) наблюдается между выходами жидких продуктов и относительным содержанием алифатических структур [отношения $(D_{2920} + D_{2860})/D_{1600}$]. Однако такие параметры, как $[(1/m_o) \cdot dm/dT]$ и атомное отношение H/C, также могут быть использованы для экспресс-оценки возможности применения низкометаморфизованных кузбасских углей в качестве сырья для процессов гидрирования и ожижения.

Результаты выполненной работы также показывают, что среди исследованных углей плитчатая форма барзасских сапромикситов и продукт ее выветривания являются наиболее подходящим сырьем для технологий прямого ожижения с последующим получением моторных топлив и ценных химических соединений из продуктов гидроконверсии твердых топлив.

БЛАГОДАРНОСТИ

Авторы выражают благодарность сотрудникам Кемеровского регионального центра коллективного пользования СО РАН (КемЦКП) за техническую помощь при записи ИКФП-спектров образцов кузбасских углей и проведение анализов их элементного состава.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Schernikau L*. Economics of the International Coal Trade. Why Coal Continues to Power the World. 2nd Edition. Cham (Switzerland): Springer International Publishing AG, 2016. 463 p.
- Speight J.G. The Chemistry and Technology of Coal. 3rd Edition. Boca Raton/London/New York: CRC Press, Taylor & Francis Group, 2013. 845 p.
- 3. *Малолетнев А.С., Артемова Н.И. //* XTT. 2010. № 4. С. 44.
- Ali A., Zhao C.// Chin. J. Catal. 2020. V. 41. № 3. P. 375. https://doi.org/10.1016/S1872-2067(19)63492-3
- Snape C.E. // Coal in the 21st Century: Energy Needs, Chemicals and Environmental Controls (*R.E. Hester* and *R.M. Harrison*, Eds.). London (UK): The Royal Society of Chemistry, 2018. P. 173.
- Липович В.Г., Калабин Г.А., Калечиц И.В. и др. Химия и переработка угля. М.: Химия, 1988. 336 с.
- Hook M., Aleklett K. // Int. J. Energy Res. 2010. V. 34. № 10. P. 848. https://doi.org/10.1002/er.1596
- Kaneko T., Derbyshire F., Makino E., Gray D., M. Tamura M. Coal Liquefaction // Ullmann's Encyclopedia of Industrial Chemistry. V. 9. Weinheim (Germany): Wiley-VCH, 2012. P. 311. https://doi.org/10.1002/14356007.a07 197
- Kabe T., Ishihara A., Qian E.W., Sutrisna I.P., Kabe Y. Coal and Coal-Related Compounds: Structures, Reactivity and Catalytic Reactions. Amsterdam: Elsevier, 2004. 341 p.

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 4 2021

- Speight J.G. Handbook of Coal Analysis. 2nd Edition. Hoboken, NJ (USA): John Wiley & Sons. Inc., 2015. 368 p.
- Petrov I.Y., Ushakov K.Y., Bogomolov A.R., Tryasunov B.G. // Int. J. Eng. & Techn. 2018. V. 7. № 3. 32. P. 161. https://doi.org/10.14419/ijet.v7i3.32.24668
- Ушаков К.Ю., Петров И.Я., Богомолов А.Р. // Энергетика и энергосбережение: теория и практика. Сб. мат. IV Всероссийской научно-практической конференции: электронный сборник. Кемерово: Изд-во КузГТУ, 2018. С. 174.1.
- 13. Белянин Б.В., Эрих В.Н. Технический анализ нефтепродуктов и газа. М.: Химия, 1975. 336 с.
- Бойко Е.А. Комплексный термический анализ твердых органических топлив. Кемерово: ИПЦ КГТУ, 2005. 383 с.
- Ingraham T.R., Marier P. // Can. J. Chem. Eng. 1964.
 V. 42. № 4. P. 161. https://doi.org/10.1002/cjce.5450420406
- Solomon P.R. // Advances in Coal Spectroscopy (Ed. by H.L.C. Meuzelaar). N. Y.: Springer, 1992. P. 341.
- Kök M.V. // J. Therm. Anal. Calorim. 2008. V. 91. № 3. P. 763. https://doi.org/10.1007/s10973-006-8282-y
- Kaljuvee T., Keelman M., Trikkel A., Petkova V. // J. Therm. Anal. Calorim. 2013. V. 113. № 3. P. 1063. https://doi.org/10.1007/s10973-013-2957-y
- Shi L., Liu Q., Guo X., Wu W., Liu Zh. // Fuel Process. Technol. 2013. V. 108. P. 125. https://doi.org/10.1016/j.fuproc.2012.06.023
- Богомолов А.Р., Петров И.Я., Жалмагамбетова У.К. // Теплоэнергетика. 2020. № 3. С. 24. [Thermal Engineering. 2020. Т. 67. № 3. Р. 165]. https://doi.org/10.1134/S0040601520030015 https://doi.org/10.1134/S0040363620030017
- Ibrahim M.M., Seehra M.S., Kegh R.A. // Fuel Process. Technol. 1990. V. 25. № 3. P. 215. https://doi.org/10.1016/0378-3820(90)90028-Q
- Janikowski S.K., Stenberg V.I. // Fuel. 1989. V. 68. № 1. P. 95. https://doi.org/10.1016/0016-2361(89)90018-5
- Burgess Clifford C., Song C. // Advances in Clean Hydrocarbon Fuel Processing. – New Delhi (India): Woodhead Publ. Ltd., 2011. P. 105.
- 24. *Haenel M.W.* // Handbook of Heterogeneous Catalysis. 2nd Edition. Weinheim (Germany): Wiley-VCH, 2008. P. 3023.
- Ma S., Hill J.O., Heng S.A. // J. Therm. Anal. 1991.
 V. 37. № 6. P. 1161. https://doi.org/10.1007/BF01913852
- Tomić J., Schobert H.H. // Energy & Fuels. 1996. V. 10. № 3. P. 709. https://doi.org/10.1021/ef9501370

- Hao P., Bai Z., Hou R., Xua J., Bai J, Guo Z., Kong L., Li W. // Fuel. 2018. V. 211. P. 783. https://doi.org/10.1016/j.fuel.2017.09.122
- Shan X., Shu G., Li K., Zhang X., Wang H., Cao X., Jiang H., Weng H. // Fuel. 2017. V. 194. P. 291. https://doi.org/10.1016/j.fuel.2017.01.034
- Hao P., Bai Z.-Q., Zhao Zh.-T., Ge Z.-F., Hou R.-R., Bai J., Guo Zh.-X., Kong L.-X., Li W. // Fuel Process. Technol. 2018. V. 173. P. 75. https://doi.org/10.1016/j.fuproc.2018.01.012
- Gray D., Barrass G., Jezko J., Kershaw J.R. // Fuel. 1980. V. 59. № 3. P. 146. https://doi.org/10.1016/0016-2361(80)90157-X
- Marco I., Chomon M.J., Legarreta J.A., Arias P.L. // Fuel Process. Technol. 1990. V. 24. P. 127. https://doi.org/10.1016/0378-3820(90)90049-X

- Wang S., Tang Y., Schobert H.H., Jiang D., Sun Y., Guo Y., Su Y., Yang S. // Fuel. 2015. V. 162. P. 121. https://doi.org/10.1016/j.fuel.2015.09.010
- Wang S., Tang Y., Schobert H.H., Guo Q., Wang F. // J. Fuel Chem. Technol. 2010. V. 38. № 2. P. 129. https://doi.org/10.1016/S1872-5813(10)60025-4
- Marshall C., Large D.J., Meredith W., Snape C.E., Uguna C., Spiro B.F., Orheim A., Jochmann M., Mokogwu I., Wang Y., Friis B. // J. Coal Geol. 2015. V. 143. P. 22. https://doi.org/10.1016/j.coal.2015.03.006
- 35. *Cudmore J.F.* // Fuel Process. Technol. 1978. V. 1. № 3. P. 227. https://doi.org/10.1016/0378-3820(78)90021-8
- 36. Lin H., Lian J., Liu Y., Xue Y., Yan S., Han Sh., Wei W. // Fuel. 2019. V. 240. P. 84. https://doi.org/10.1016/j.fuel.2018.11.067