УДК 665.666.002.8

ФИЗИКО-ХИМИЧЕСКАЯ ОБРАБОТКА НЕФТЯНЫХ ОСАДКОВ ПРИ УТИЛИЗАЦИИ НЕФТЕШЛАМОВ

© 2021 г. Ю. В. Лоскутова^{1,*}, Н. В. Юдина^{1,**}, И. В. Прозорова^{1,***}

¹ ФГБУН Институт химии нефти СО РАН, 634055 Томск, Россия *e-mail: reoloil@ipc.tsc.ru **e-mail: natal@ipc.tsc.ru ***e-mail: piv@ipc.tsc.ru Поступила в редакцию 22.01.2021 г. После доработки 09.02.2021 г. Принята к публикации 15.02.2021 г.

Исследовано влияние комплексной физико-химической обработки, сочетающей низкочастотное акустическое воздействие и применение депрессорных присадок, на состав и вязкостные свойства нефтяного осадка. Установлено, что после комплексного воздействия происходит дополнительное понижение вязкости обработанных осадков в 1.5–2 раза, тиксотропное восстановление свойств увеличивается до 72 ч. Минимальные значения вязкости смеси осадка с нефтью соответствуют максимальному снижению содержания бензольных и спиртобензольных смолистых компонентов и росту количества масляной фракции.

Ключевые слова: нефтяной осадок, состав, низкочастотная акустическая обработка, вязкость, присадка, релаксация

DOI: 10.31857/S0023117721040046

введение

Добыча, транспортировка, хранение и использование нефти и нефтепродуктов относятся к наиболее агрессивным отраслям по сумме техногенных факторов, оказывающих воздействие на окружающую среду. Последствиями подобного воздействия могут стать аварийные ситуации, способные повлечь за собой экологические проблемы, связанные с попаданием загрязняющих веществ в почву и водную среду [1, 2]. На нефтеперерабатывающих заводах во время хранения и в ходе текуших операций образуется огромное количество нефтяных осадков. В них помимо твердых нефтяных компонентов в виде асфальтенов, смол и парафинов содержится значительное количество нефти. Содержание нефтяных компонентов в нефтехранилищах часто достигает 60%.

Нефтяные осадки, или нефтешламы, представляют собой многокомпонентные устойчивые агрегативные физико-химические системы, состоящие из 5–90 мас. % нефтяных углеводородов, 1–52 мас. % воды и 0.8–65 мас. % минеральных добавок (песок, глина, окислы металлов и т.д.) [3].

В настоящее время не существует унифицированного способа переработки нефтешламов. Большинство известных физико-химических технологий переработки отходов не универсальны, однако могут дать максимальный результат при использовании отходов как сырья для получения полезного продукта [4, 5], поэтому перестройка структуры нефтяной промышленности должна быть направлена в область развития безотходных природоохранных технологий, минимизирующих количество нефтеотходов, или повторного их использования.

Представляют интерес эффективные технологии, наносящие минимальный экологический ущерб окружающей природной среде, имеющие низкие капитальные затраты и позволяющие получать прибыль. Одним из направлений регулирования вязкостно-температурных свойств нефтяных осадков является применение комплексных физико-химических технологий с использованием химических реагентов и физических полей различной природы (магнитного, ультразвукового, электрического и других) [6-8]. Низкочастотное акустическое воздействие на дисперсные системы - одно из самых эффективных механичевоздействий. **VСКОРЯЮШИХ** ских различные процессы. Акустическая обработка увеличивает массо- и теплообмен, ускоряет химические реакции, снижает механическое сопротивление, позволяя достичь в итоге очень низких значений вязкости [9]. На практике воздействие низкочастотного акустического поля успешно применяется при откачке высокопарафинистых нефтей и неф-

N⁰	Характеристика образца	Осадок	Нефть
1	Механические примеси (ГОСТ 6370–18), мас. %	11.5	0.1
2	Плотность р ₂₀ (ГОСТ 3900–85), кг/м ³	1046	841
3	Вода (ГОСТ 2477–2014), мас. %	0.6	_
4	Температура застывания (ГОСТ 20287-91), °С	51.6	-22.6
5	Парафины ПУ (ГОСТ 11851-2018), мас. %	41.3	3.4
	Смолы силикагелевые (ГОСТ 11851–2018):		
	бензольные БС, мас. %	9.0	6.1
6	спирт-бензольные СБС, мас. %	5.3	3.2
7	Асфальтены АСФ (ГОСТ 11851-2018), мас. %	3.6	1.1

Таблица 1. Физико-химические характеристики образцов

тепродуктов из нефтехранилищ и цистерн, для уменьшения парафинизации трубопроводов, а также при удалении и переработке нефтешламов в резервуарах и нефтехранилищах, при приготовлении буровых и цементных растворов, полимерных составов и водонефтяных эмульсий.

Опытно-промышленные испытания на реальных объектах показали высокую эффективность технологии низкочастотной акустической обработки (НАО) для утилизации нефтешламов. Однако существует необходимость дополнительных лабораторных исследований для выявления оптимальных параметров НАО [10]. Кроме того, использование НАО с добавлением в нефтешламы многофункциональных полимерных присадок позволяет не только дополнительно снизить вязкость, но и значительно увеличить время тиксотропного восстановления связнодисперсной структуры осадка.

Цель работы — изучение влияния низкочастотной акустической обработки и полимерной присадки на вязкость и фракционный состав нефтяного осадка при его смешении с легкой нефтью для дальнейшего использования в процессе ректификации или утилизации нефтешламов.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В качестве объектов исследования были отобраны образцы нефтешлама из резервуара Омского нефтеперерабатывающего завода и нефти, поступающей на предприятие из магистрального трубопровода на переработку. Нефтешлам представляет собой твердопластичный осадок бурого цвета с высоким содержанием парафиновых углеводородов, смолистых и асфальтеновых веществ, а также воды и механических примесей: песка, глины и минеральных солей (табл. 1). Эксперимент проводится с органической частью нефтешлама — нефтяным осадком, полученным после термостатирования нефтешлама при 70°С в течение 1 ч.

НАО проводили на лабораторной установке, аналоге промышленного вибратора струйного погружного ВЭМА-0.3, в стационарном режиме при комнатной температуре [11]. Колебательная система установки, состоящая из вибрирующего конфузора (активатора), упругих элементов и моторной части, погружена в жидкую среду. Необходимая для поддержания устойчивых возвратноколебательных движений активатора энергия передается в систему магнитным полем. Предельная напряженность магнитного поля Н в воздушном зазоре прибора составляет (1): $H = NI/\delta_{min} =$ $= 1000 \cdot 2/1 \cdot 10^{-3} = 2 \cdot 10^{6}$ А/м, где N – число витков катушки электромагнита; І – ток катушки электромагнита, А; δ_{min} – минимальный зазор электромагнита, м.

При использовании НАО на нефтесодержащую среду действуют механическое движение потока нефтяной системы (НС), сдвиговое движение между слоями НС, знакопеременное давление до 3 атм, акустическое поле, электрическое и магнитное поле; скорость затопленных струй до 20 м/с, ускорение рабочего органа-активатора до 100 g, частота основного воздействия 50 Гц. НАО разрушает существующую в НС коллоидно-дисперсную структуру, что приводит к значительному изменению структурно-механических свойств [12].

В ходе эксперимента образец нефтяного осадка смешивали с легкой товарной нефтью в различных соотношениях осадок:нефть (1.5:1; 1:1, 1:1.5 и 1:2). Пробы объемом 200–250 мл подвергали 10 мин НАО при температуре 15°С, чтобы избежать потерь легкой фракции при интенсивном перемешивании. В конце обработки в смеси вводили 0.1 мас. % комплексной полимерной присадки российского производства *Difron* 3004 (D04), обладающей депрессорными, диспергирующими и ингибирующими свойствами для предотвращения процесса формирования твердых нефтяных отложений на стенках оборудования. Эффективность действия присадки контролировали в тече-

Рис. 1. ИК-спектры асфальтенов нефтешлама (1) и нефти (2).

ние 3 сут по изменению вязкости при 15° С на миниротационном вискозиметре ИНПН "Кристалл" марки *SX*-800 (ИХН СО РАН, Томск).

В работе исследовали влияние НАО на групповой и фракционный состав, температуру начала кипения смеси нефтяного осадка с легкой нефтью. Анализ группового состава проводили по методикам, описанным в ГОСТ (табл. 1), фракционного состава — по методу Энглера (ГОСТ 2177-99).

Микроструктуру исследуемых образцов оценивали методом оптической микроскопии с помощью биологического микроскопа AxioLabA1 (CarlZeiss), оснащенного цифровой камерой AxiocamERc5s при 400-кратном увеличении.

Относительное содержание структурных фрагментов осадка и нефти определяли с использованием данных ИК-спектроскопии. Спектры регистрировали на *FTIR*-спектрометре *NICOLET 5700* в области 400–4000 см⁻¹. Обработку спектров и определение оптической плотности проводили с помощью программного обеспечения *OMNIC 7.2 Thermo Nicolet Corporation*. В качестве примера на рис. 1 приведены ИК-спектры асфальтенов исходного осадка (1) и нефти (2).

Для определения относительного содержания структурных фрагментов использовали следующие характеристические полосы поглощения (п.п.): 1730 см⁻¹ – С=О-группы в сложных эфирах, 1700 см⁻¹ – С=О-группы в кислотах, 1650 см⁻¹ – С=О-группы в амидах, 1600 см⁻¹ – ароматические С=С-связи, 850, 805 и 760 см⁻¹ – полосы в "ароматическом триплете", 1380 см⁻¹ – СН₃-группы, 1030 см⁻¹ – S = О-группы, 720 см⁻¹ – (CH₂)_n- группы в алифатических структурах с n > 4 [13]. Относительное содержание структурного фрагмента оценивали по спектральному коэффициенту, рассчитанному из отношения интегральной оптической плотности, соответствующей характеристической п.п, к интегральной оптической плотности п.п. 1465 см⁻¹ – алифатические С-Нсвязи, использованной как внутренний стандарт [14]. Нормирование оптических плотностей, соответствующих полос поглощения к полосе 1465 см⁻¹, позволяет оценить структурные параметры высокомолекулярных соединений.

В табл. 2 приведены значения спектральных коэффициентов для высокомолекулярных соединений, выделенных из нефтяного осадка и нефти. В структуре асфальтенов осадка наблюдаются существенные изменения: значительно уменьшается содержание карбоксильных групп (D_{1710}/D_{1465}) , ароматических фрагментов (D_{1620}/D_{1465}) и возрастает количество парафиновых углеводородов (D_{725}/D_{1465}) при снижении степени их разветвленности (D_{1380}/D_{1465}) . Избирательность ассоциирования и седиментация асфальтенов обусловлены присутствием в нефти молекул двух типов, различающихся структурными характеристиками. Асфальтены "островной" структуры за счет значительного количества в них алифатических цепей взаимодействуют с н-алканами, способствуя сокристаллизации [15-17].

Существенных изменений в структуре смол нефтяного осадка не произошло, за исключением увеличения в спиртобензольных смолах количества парафиновых углеводородов и степени их разветвленности. Присутствие смол и асфальтенов в нефтяном осадке может быть следствием

Показатель	Нефть			Нефтяной осадок			
показатель	ACΦ	БС	СБС	ACΦ	БС	СБС	
D_{1610}/D_{1465}	0.36	0.44	0.30	0.19	0.44	0.34	
D_{1710}/D_{1465}	1.27	0.31	0.70	0.61	0.38	0.72	
D_{1380}/D_{1465}	0.61	0.71	0.57	0.37	0.71	0.78	
D_{725}/D_{1465}	0.19	0.23	0.16	0.39	0.28	0.85	
D_{975}/D_{1465}	0.19	0.25	0.13	0.17	0.20	0.12	

Таблица 2. Спектральные коэффициенты асфальтенов, бензольных и спиртобензольных смол, выделенных из нефти и нефтяного осадка

окклюзии нефтяного флюида кристаллизующейся парафиновой фазой.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полная гомогенизация нефтешлама достигалось только после 10 мин НАО. Данные оптической микроскопии полтвержлают выволы об изменении структуры нефтяного осадка (рис. 2). В течение первых 5 мин обработки наблюдается формирование более однородной сферолитной структуры с агрегатами меньшего диаметра, чем у исходного образца (рис. 2, б). С увеличением времени обработки до 10 мин осадок характеризуется большей степенью аморфности с небольшими участками смешанной дендритно-сферолитной структуры (рис. 2, в). При этом отмечается снижение числа и размеров кристаллитов как сферической, так и дендритной формы. После совместной обработки осадки также имеют сложную структуру, в которой присутствуют крупные сферические и пластинчатые агрегаты.

В табл. 3 представлены результаты изменения вязкости обработанных образцов смеси нефтешламов с нефтью в различных соотношениях без добавки присадки и с добавлением 0.1 мас. % D04 в течение 3 сут. После 10 мин акустического воздействия образцы нефтешлама при минимальном разбавлении легкой нефтью (1.5 : 1 и 1 : 1) становятся текучими. Однако через 24–72 ч вязкость полностью восстанавливается до значений, превышающих исходные, за счет явления тиксотропного восстановления связнодисперсной структуры осадка.

Комплексная физико-химическая обработка нефтешлама при добавлении нефти в соотношении 1 : 1.5 приводит к снижению вязкости нефтяной системы в 2.2 раза. Свободно-дисперсное состояние системы сохраняется в течение 2–3 сут, что достаточно для успешной перекачки нефтешлама из резервуара для дальнейшей переработки или утилизации.

Изучено влияние НАО при разбавлении нефтяного осадка нефтью в соотношении 1.5 : 1, 1 : 1 и 1 : 1.5 на выход светлых фракций. Для предотвращения потери легколетучих фракций во время воздействия НАО обработку смеси проводили при температуре 15°С в течение 10 мин. Полученные результаты представлены в табл. 4.

С увеличением степени разбавления осадка нефтью наблюдается снижение температуры начала отгона на 41°С при минимальном соотношении осадок:нефть (1.5 : 1) и на 91°С – при максимальном (1 : 1.5). Акустическая обработка смеси также сопровождается увеличением объема выхода всех светлых нефтяных фракций. Анализ результатов, полученных после пересчета данных по изменению фракционного состава на выход фракции с интервалом 50°С, показал, что приме-

Таблица 3. Вязкость нефтяного осадка после 10 мин НАО при 15°С в течение 3 сут

Οδραρομ	Изменение вязкости во времени, мПа с					
Образец	0ч	24 ч	48 ч	72 ч		
	Осадок : нефть – 1.5 : 1					
Без D04	335	394	413	435		
с 0.1 мас. % D04	282	206	257	350		
	Осадок : нефть – 1 : 1					
Без D04	288	296	315	334		
с 0.1 мас. % D04	180	195	208	219		
		ефть — 1 : 1.5				
Без D04	250	264	286	301		
с 0.1 мас. % D04	113	127	134	150		
	Осадок : нефть – 1 : 2					
Без D04	86	125	302	358		
с 0.1 мас. % D04	91	86	103	117		

нение НАО для смеси осадка с легкой нефтью приводит к увеличению выхода всех фракций по сравнению с нефтяным осадком.

НАО нефтяного осадка с нефтью (в соотношении 1 : 1) оказывает влияние на групповой состав смеси: незначительно снижается содержание асфальтеновых компонентов на 0.1–0.3%, количество бензольных смол уменьшается на 1.3–2.2%, а спирто-бензольных смол – на 0.8–2.2% (табл. 5). Снижение доли высокомолекулярных нефтяных компонентов сопровождается увеличением количества масляной фракции за счет увеличения в ее составе содержания ароматических углеводородов (АУ).

Полученные экспериментальные данные по изменению группового состава после НАО смеси осадка с нефтью хорошо коррелируют с результатами исследования вязкости. Значительное понижение вязкости после физико-химического воздействия соответствует максимальному уменьшению содержания бензольных и спиртобензольных смолистых компонентов и максимальному увеличению масляной фракции. Это может быть связано с тем фактом, что акустическое воздействие приводит к размыванию внешней оболочки нефтяного ассоциата, построенного по принципу снижения сил межмолекулярного взаимодействия. Внешняя оболочка такого ассоциата в основном представлена малополярными компонентами нефтяной коллоидно-дисперсной системы, а именно, смолами и парафиновыми углеводородами. После НАО в дисперсионной среде появляются новые ароматические замещенные структуры, которые до воздействия находились в окклюдированном состоянии. т.е. были экранированы и входили в состав более глубокого слоя нефтяного ассоциата. Взаимодействие этих ароматических структур с молекулами дисперсионной среды приводит к понижению вязкости.

Сложный состав как нефти, так и нефтяного осадка, а также использование комплексной обработки, сочетающей акустическое воздействие, мощное омагничивание и интенсивное перемешивание с высокими сдвиговыми скоростями и добавку химического реагента, не позволяют четко сформулировать единый подход к описанию механизма действия НАО на нефтяную дисперсную систему. Известно, что смолы и асфальтены препятствуют образованию объемной структурной сетки, и кристаллы парафина остаются в подвижном состоянии в интермицеллярной форме [12]. В данном случае смолы и асфальтены выступают в роли ПАВ и выполняют функции структурно-механического барьера на поверхности частиц, препятствуют их коагуляции, увеличивая глубину и скорость разрушения структуры дисперсной фазы [9, 10].

Рис. 2. Микрофотографии нефтяного осадка: исходный (а); после 5 мин НАО (б); после 10 мин НАО (в).

2021

№ 4

ФИЗИКО-ХИМИЧЕСКАЯ ОБРАБОТКА НЕФТЯНЫХ ОСАДКОВ

- · · · · · · · · · · · · · · · · · · ·								
Taxuanativna attrava °C	Доля фракции от общего объема образца, об. %							
температура опона, С	осадок*	осадок	1.5 : 1	1:1	1:1.5	нефть		
Температура начала отгона, °С:	176	156	115	76	65	60		
100				3	6	10		
150			5	13	19	23		
200		1	9	19	28	36		
250	2	2	9	19	28	44		
300	8	8	8	16	30	56		
350	23	27	29	46	60	69		
Остаток после перегонки	77	74	71	54	40	31		

Таблица 4. Фракционный состав осадка и смеси с нефтью после 10 мин НАО

*Исходный осадок.

Таблица 5. Групповой состав нефтяного осадка до и после НАО

	Массовая доля в смеси, %						
Образец осадка смеси	ACФ	БС	СБС	масла			
				всего	в т.ч. АУ	в т.ч. ПУ	
До НАО	2.3	7.6	4.3	85.8	3.8	22.4	
10 мин НАО	2.2	6.3	3.5	86.1	4.6	21.8	
НАО с 0.1 мас. % D04	2.0	5.4	2.1	92.5	6.2	20.3	

ЗАКЛЮЧЕНИЕ

При низкочастотной акустической обработке осуществляется фазовый переход связнодисперсной нефтяной системы осадка в свободно-дисперсное состояние. Использование комплексной физико-химической обработки, сочетающей низкочастотное акустическое воздействие и применение полимерных присадок, позволяет дополнительно снизить вязкость обработанных осадков в 1.5–2 раза. Полное тиксотропное восстановление связнодисперсной системы нефтяного осадка происходит в течение 48–72 ч.

Значительное понижение вязкости смеси осадка после комплексного физико-химического воздействия соответствует максимальному снижению содержания бензольных и спиртобензольных смолистых компонентов и максимальному увеличению масляной фракции.

Показана возможность использования нефтешламов при переработке в непрерывном процессе ректификации нефти для получения светлых фракций нефти.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания ФГБУН Института химии нефти СО РАН при финансовой поддержке МИНОБРНАУКИ РФ (НИОКТР 121031500049-8).

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 4 2021

СПИСОК ЛИТЕРАТУРЫ

- Johnson O.A., Affam A.C. // Environ. Eng. Res. 2018. V. 24. № 2. P. 191. https://doi.org/10.4491/eer.2018.134
- Hui K., Tang Ju., Lu H., Xi B., Qu Ch., Li J. // Arab. J. Chem. 2020. V. 13. № 8. P. 6523. https://doi.org/10.1016/j.arabjc.2020.06.009
- 3. *Neff J.M.* Composition, environmental, fates, and biological effects of water based drilling muds and cuttings discharged to the marine environment. Prepared for Petroleum Environmental Research Forum and American Petroleum Institute, 2005. 73 p.
- Xiao W., Yao X., Zhang F. // Adv. Civil Engng. 2019.
 V. 2019. P. 10.
- https://doi.org/10.1155/2019/6280715
- Mater L., Sperb R.M., Madureira L., Rosin A., Correa A., Radetski C.M. // J. Hazard. Mater. 2006. V. 136. P. 967. https://doi.org/10.1016/j.jhazmat.2006.01.041
- *Taiwo E.A., Otolorin J.A.* // Petrol. Sci. Technol. 2009. V. 27. P. 836.

https://doi.org/10.1080/10916460802455582

- El Naggar A.Y., Saad E.A., Kandil A.T., Elmoher H.O. // J. Petrol. Technol. Altern. Fuel. 2010. V. 1. P. 10.
- Li X., Zhang F., Guan B., Sun J., Liao G. // IOP Conf. Series: Earth and Environmental Science. 2020. V. 467. 012173. https://doi.org/10.1088/1755-1315/467/1/012173
- 9. Лоскутова Ю.В., Прозорова И.В., Юдина Н.В. // Химия и технология топлив и масел. 2011. Т. 47. № 5. С. 21. [Loskutova Yu.V., Prozorova I.V., Yudina N.V.// Chemistry and Technology of Fuels and Oils 2011. V. 47.

№ 5. P. 358].

https://doi.org/10.1007/s10553-011-0308-x

- 10. Лоскутова Ю.В., Юдина Н.В. // Химия в интересах устойчивого развития. 2020. № 2. С. 266. [Loskutova Yu.V., Yudina N.V. // Chem. Sustainable Development. 2020. V. 28. P. 266]. https://doi.org/10.15372/CSD2020228 https://doi.org/10.15372/KhUR2020228
- Гузеев С.П., Данекер В.А., Рикконен С.В., Теплов А.И., Хорьков А.К. Способ вибрационной струйной магнитной декомпрессионной акустической активации растворов. Пат. 2203862 РФ // Б.И. 2003. № 13. 37 с.
- Лоскутова Ю.В., Прозорова И.В., Юдина Н.В., Рикконен С.В. // Коллоид. журн. Т. 67. № 5. С. 663. [Loskutova Yu.V, Prozorova I.V., Yudina N.V., Rikkonen S.V. // Colloid Journal. 2005. V. 67. № 5. Р. 602]. https://doi.org/10.1007/s10595-005-0138-9

- 13. Иванова Л.В., Сафиева Р.З., Кошелев В.Н. // Вестн. Башкирск. ун-та. 2008. Т. 13. № 4. С. 869.
- Петрова Л.М., Аббакумова Н.А., Фосс Т.Р., Романов Г.В. // Нефтехимия. 2011. Т. 51. № 4. С. 262. [Petrova L.M., Abbakumova N.A., Foss T.R., Romanov G.V. // Petroleum Chemistry. 2011. V. 51. Р. 252]. https://doi.org/10.1134/S0965544111040062
- Ганеева Ю.М., Юсупова Т.Н., Романов Г.В. // Успехи химии. 2011. Т. 80. № 10. С. 1034. [Ganeeva Yu., M., Yusupova T.N., Romanov G.V. // Russ. Chem. Rev. 2011. V. 80. № 10. Р. 993]. https://doi.org/10.1070/RC2011v080n10ABEH004174
- Mahmoud R., Gierycz P., Solimando R., Rogalski M. // Energy & Fuels. 2005. V. 19. P. 2474. https://doi.org/10.1021/ef050161u
- Stachowiak C., Viguie J.R., Grolier J.P., Rogalski M. // Langmuir. 2005. V. 21. P. 4824. https://doi.org/10.1021/la047126k