——— ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ ———

УДК 544.454:662+536.66

КОРРЕКИРОВКА СТАНДАРТНЫХ МЕТОДОВ ИСПЫТАНИЙ ВЗРЫВЧАТЫХ ВЕЩЕСТВ НА ЧУВСТВИТЕЛЬНОСТЬ К УДАРУ

© 2023 г. А. В. Дубовик*

Федеральный исследовательский центр им. Н.Н. Семёнова Российской академии наук, Москва, Россия *E-mail: a-dubovik@mail.ru

> Поступила в редакцию 23.03.2022; после доработки 14.04.2022; принята в печать 20.04.2022

Вопрос о целесообразности использования нового BB или смесевого состава часто решается по результатам их испытаний на чувствительность к механическим воздействиям (удару, трению и других), которые обычно выполняются стандартными методами — государственными, отраслевыми и т.д. Однако опыт применения этих методов показывает, что их результативность нередко недостаточно высока и часто имеет место недооценка уровня опасности BB в обращении. В статье по результатам анализа лабораторных методов испытаний BB на чувствительность к удару — критических давлений и критических энергий, основанных на поиске оптимальных для данного BB параметров механического инициирования взрыва, рассматриваются пути модификации существующих стандартов испытаний для повышения их точности при получении данных о показателях чувствительности BB.

Ключевые слова: взрывчатые вещества, взрывоопасность, чувствительность к удару, методы испытаний, инициирование взрыва, критические условия.

DOI: 10.31857/S0207401X23030056, EDN: LXXDPL

введение

Научно-технические проблемы, возникающие на стадии разработок корректных методов испытаний взрывчатых и прочих энергоемких материалов на чувствительность к механическим воздействиям, постоянно находятся в центре внимания специалистов, занимающихся созданием безопасных условий для производства и переработки различных видов взрыво- и пожароопасных субстанций [1–4]. Трудность практического решения поставленных задач состоит прежде всего в том, что необходимо одновременно обеспечить как простоту, доступность и малые трудозатраты испытаний, так и высокую точность и воспроизводимость результатов определения показателей чувствительности взрывчатых веществ (BB).

Упрощенные методы испытаний, которые положены в основу стандартных методов (государственных, отраслевых и других), как правило, дают недостаточно верные представления о чувствительности ВВ, часто недооценивая их опасность в обращении. Обычно это связано с фиксацией какого-либо методического параметра испытаний — массы образца, энергии удара и пр. В этом случае обычно теряется из вида такой важный показатель испытаний, как фактор критичности условий возникновения взрыва, позволяющий определить максимум чувствительности ВВ к данному виду воздействия. Критические показатели инициирования BB можно установить только при вариации большинства определяющих параметров внешнего воздействия и состояний испытываемого образца. Однако строгое соблюдение принципа вариативности параметров испытаний неизбежно приводит к усложнению исследовательских работ и увеличению трудозатрат.

Ниже рассматриваются достоинства и недостатки некоторых из существующих стандартных и лабораторных методов испытаний BB на чувствительность к удару и вносятся предложения по их улучшению на основе последних теоретических и экспериментальных результатов исследований по поведению зарядов твердых BB при ударе на копре.

ЛАБОРАТОРНЫЕ МЕТОДЫ ИСПЫТАНИЙ ВВ

Метод критических давлений (МКД) для испытаний ВВ на чувствительность к удару был разработан в начале 1960-х годов в ИХФ РАН группой сотрудников под руководством Л.Г. Болховитинова, Г.Т. Афанасьева и В.К. Боболева [5]. Ранее для характеристики чувствительности ВВ использовалась процентная оценка числа взрывов при ударах с фиксированными энергиями по зарядам постоянной массы (ГОСТ 4545-48). С введением МКД сформировался новый методологический подход к исследованиям чувствительности ВВ, основанный на глубоком понимании физико-механических процессов при ударе и строго обоснованных количественных данных о критических показателях чувствительности ВВ. Поясним его суть на примере испытаний на чувствительность к удару зарядов из ультрадисперсного перхлората аммония (УДП) с размером частиц 0.8-1.4 мкм. Учитывая тот факт, что критические параметры возбуждения взрыва присущи всем ВВ, то полученные в опытах с зарядами УДП данные об особенностях их поведения при ударе полностью применимы для формирования четких представлений об основах механической чувствительности ВВ с произвольной структурой и направлениях поиска критических условий их инициирования.

При определении чувствительности ВВ по методу критических давлений используются спрессованные под давлением 0.3–0.5 ГПа (в зависимости от прессуемости исследуемого вещества) дискообразные заряды диаметром D = 2R и толщиной $h_0 < D$. Обычно изготавливают заряды с D = 10 мм и $0.1 \le h_0 \le 1.0$ мм. Для осциллографической записи давлений холостого и снаряженного ударов применяются проволочные тензодатчики, а регистрация момента воспламенения или взрыва заряда ВВ осуществляется с помощью фотоэлектрических элементов.

В работах [5–7] показано, что поведение практически всех твердых ВВ, включая всевозможные смесевые составы, при ударе приблизительно одинаково: с начала опыта в течение нескольких десятков микросекунд тонкий заряд сжимается упруго и давление возрастает, как при холостом ударе. Затем при достижении некоторого давления P_0 начинается кратковременная (~1 мкс) пластическая деформация заряда при слабовозрастающем давлении P(t), которая сменяется развитым пластическом течением и/или прочностным разрушением заряда, сопровождающимся резким (за время $t_f \approx 10-30$ мкс) спадом давления. Именно во время прочностных разрушений зарядов фотоэлементы фиксируют вспышки взрыва.

Спад давления на осциллограмме удара сопровождается высокоскоростным (до 0.5 км/с) разлетом фрагментов разрушения заряда или раскаленных продуктов взрыва в случае инициирования взрывной реакции в радиальном потоке вещества. Если отложить в координатах P_0-h_0 значения давления разрушений, снятые при фиксированной энергии удара $E_0 = MgH (H - высота сбрасывания$ груза массой M на заряд BB), то нетрудно установить гиперболический вид полученной зависимости, которая хорошо описывает состояния предельных нагрузок при сжатии тонких пластических прослоек [5–8]:

$$P_0 = \sigma \left(1 + D/3^{1.5} h_0 \right), \tag{1}$$

где σ — предел прочности образца ВВ на сжатие. Анализ экспериментальной кривой $P_0(h_0)$ показывает, что взрывы при малых толщинах h_0 фиксируются всегда в момент разрушения заряда, тогда как при больших h_0 отказы чередуются со взрывами, а последние возникают только при повторных, т.е. следующих за первым, разрушениях заряда. Причем заряды большой толщины h_b (в несколько мм) взорвать практически невозможно, поскольку энергия удара последовательно растрачивается на множестве слабых разрушений.

Для данного **BB** четкую границу по оси h_0 между регулярными и спорадически возникающими взрывами удается провести только при нескольких параллельно выполненных экспериментах. Но даже и в этом случае граничное значение h_0 , получившее название критической толщины заряда $(h_{\rm KD})$, определяется по подсчету количества опытов с равным числом взрывов и, условно говоря, отказов, т.е. по 50%-ной частоте полноценных взрывов. Соответствующее критической толщине давление на прочностной кривой $P_0(h_0)$ называется критическим (Ркр). При однократном проведении опыта с зарядами ВВ погрешность определения $h_{\rm kp}$ и $P_{\rm kp}$ достаточно высока (15–20%), но при нескольких повторениях эксперимента она снижается до 5-10%. Поскольку тонкие и утолщенные заряды ВВ прессуются неодинаково, ошибка определения величины их прочности σ, значение которой усредняется по результатам расчетов по формуле (1), представляется сравнительно высокой: 15-20%.

Физически величина $P_{\rm kp}$ определяет давление, создаваемое ударом в заряде BB, время разрушения которого, t_f , равно периоду индукции теплового взрыва, t_i , инициированного протеканием диссипативных процессов (пластическое течение, фрикционный разогрев и другие) в горячих точках быстро движущейся среды. Энергетическим источником происхождения взрыва является тепло, в которое трансформируется значительная часть упругой энергии

$$E_{\rm kp} = P_{\rm kp}^2 S^2 / 2k, \ S = \pi R^2,$$
 (2)

запасаемой в копровой системе нагружения в начальной стадии удара (k — механическая жесткость копра). Обобщая полученный результат, констатируем, что при всех $E_0 \ge E_{\rm kp}$ прочностное разрушение BB запускает процессы сброса энергии из копровой системы нагружения в заряд, ее расходования на движение и разогрев продуктов разрушения и инициирование взрыва. Энергия удара E_0 также определяет максимальную толщи-

ХИМИЧЕСКАЯ ФИЗИКА том 42 № 3 2023

Рис. 1. Зависимость параметров удара от толщины зарядов УДП: 1 – давление $P(h_0)$, 2 – высота сбрасывания груза $H(h_0)$, 3 – расчет значений давления и энергии по формулам (1), (4). Точки – эксперимент.

ну заряда (h_x) , который невозможно разрушить ударом ("сверхтонкий" заряд), и соответствующее ей давление холостого удара (P_x) :

$$h_x = D \Big[3^{1.5} (P_x / \sigma - 1) \Big]^{-1}, P_x = S^{-1} (2E_0 k)^{1/2}.$$
 (3)

Из выражения (3) следует, что при уменьшении E_0 снижается давление P_x и возрастает толщина заряда *h_x*. При ударе по зарядам толщиной $h_0 \leq h_x$ давление P(t) изменяется по закону холостого опыта (синусоидально). Заряды толщиной $h_x < h_0 \le h_{\text{кр}}$ взрываются регулярно, поскольку при их разрушении время *t_i ≤ t_f.* Для зарядов толщиной $h_{\rm KD} \leq h_0 \leq h_b$ справедливо условие $t_i \geq t_f$, и вероятность их взрывов (при повторных разрушениях) монотонно снижается до нуля по мере того как $h_0 \rightarrow h_b$. На рис. 1 приведена прочностная кривая 1 для зарядов УДП, снятая в экспериментах с $E_0 =$ = 24.5 Дж (P_x = 1.32 ГПа), на которой темными квадратами отмечены усредненные по трем параллельным опытам взрывы, а светлыми – их отсутствие при первом акте разрушения зарядов, а также штриховыми прямыми показано положение критической точки: $h_{\rm kp} = 0.48$ мм, $P_{\rm kp} = 0.88$ ГПа; здесь значения $\sigma = 175$ МПа, $h_x = 0.3$ мм. Отметим, что несомненным достоинством МКД является тот факт, что регистрируемые с его помощью критические параметры инициирования ВВ не зависят от энергии удара, лишь бы выполнялось условие прочности (1) при $h_0 > h_x$.

Развитием МКД в направлении отказа от сложного аппаратного инструментария, но не в ущерб значимости получаемых в эксперименте результатов, стала разработка лабораторного метода критических энергий (МКЭ), выполненная автором с сотр. (А.А. Денисаевым, М.В. Лисановым и др.) в ИХФ РАН в 1970-х годах [7]. Как и в испытаниях по МКД методом КЭ испытываются на удар тонкие хорошо спрессованные (давление прессования 0.3-0.5 ГПа) заряды ВВ разной толщины h_0 , но по которым наносятся удары с варьируемой энергией Е₀. Регистрация взрыва или отказа проводится по наличию или отсутствию характерных для взрывных экспериментов аудиовизуальных эффектов. Основной недостаток органолептической процедуры регистрации взрыва-отказа компенсируется хорошо воспроизводимыми результатами многократно повторяемых опытов с ВВ (по 25 опытов с зарядом заданной толщины). Для этого в опытах с зарядами разной h_0 снимаются полные кривые частостей взрывов f(H), из которых определяются значения их нижних, H_0 , и верхних, Н₁₀₀, пределов чувствительности к удару и высоты H_{50} , при которой фиксируются 50% взрывов. Следует указать, что, применяя МКЭ, можно проводить испытания на чувствительность к удару пастообразных и вязкотекучих ВВ, что недоступно при использовании МКД.

На рис. 2 приведена кривая зависимости f(H) с указанием ее характеристических точек, снятая в опытах с зарядами УДП толщиной $h_0 = 0.3$ мм с использованием прибора со свободным истечением вещества и с грузом массой M = 10 кг. Она имеет обычную для частотных экспериментов S-образную форму, что позволяет надежно (не хуже чем с 10%-ной точностью) определить высоту $H_{50} = 20$ см. После определения величины H_{50} из опытов с зарядами другой толщины строится кривая зависимости $H_{50}(h_0)$. По описанной процедуре получены кривые зависимостей $H_0(h_0)$ и

Рис. 2. Кривая частостей взрывов f(H) для зарядов УДП с $h_0 = 0.3$ мм.

 $H_{100}(h_0)$. На рис. 3 представлены все три указанные кривые. Они имеют характерную U-образную форму и минимальные значения при единой для них толщине заряда $h_0 = 0.48$ мм, которая полностью совпадает с критической толщиной зарядов УДП $h_{\rm kp}$, найденной в опытах по МКД.

Совпадение критических толщин зарядов при инициировании ВВ в методически независимых экспериментах по МКЭ и МКД не является случайным. Оно свидетельствует о том, что показатель $h_{\rm kp}$ (точнее, $h_{\rm kp}/D$) является определяющей характеристикой чувствительности ВВ, по которой рассчитываются значимые для практики критические параметры механического инициирования – давление $P_{\rm kp}$ и энергия $E_{\rm kp}$. На рис. 1 наряду с кривой зависимость $H_{50}(h_0)$, в соответствии с которой находим значения $h_{\rm kp} = 0.48$ мм, $H_{\rm kp} = 11$ см и $E_{\rm kp} = 10.8$ Дж.

Из анализа хода кривых *1* и *2* рис. 1 следуют выводы, подтвержденные тензометрическими экспериментами:

1) на левой ветви кривой 2 ($h_0 \le h_{\rm kp}$) черными точками отмечены взрывы, возникающие при первом акте разрушений зарядов, тогда как на ее правой ветви ($h_0 > h_{\rm kp}$) взрывы, возникающие лишь при повторных разрушениях, отмечены светлыми точками;

2) наряду с $H_0(h_{\rm kp})$ параметр $H_{50}(h_{\rm kp}) = H_{\rm kp}$ характеризует (на уровне 50%-ной частости взрывов) наименьшую энергию удара, способного инициировать заряд BB. Действительно, из выражения (3) и расположения сходящихся к значению $H_{\rm kp}$ ветвей

Рис. 3. Значения нижних (1) и верхних (3) пределов инициирования взрыва, а также точек с 50%-ной вероятностью возбуждения взрыва (2) на кривых частостей взрывов в зависимости от толщины зарядов УДП.

кривой 2 следует, что при снижении энергии удара E_0 одновременно расширяются зоны отказов слева $(h_x \rightarrow h_{\rm kp})$ и справа $(h_b \rightarrow h_{\rm kp})$ от $h_{\rm kp}$. Поэтому при $E_0 \rightarrow E_{\rm kp}$ имеем в пределе $h_0 = h_{\rm kp}$ и $P_x = P_{\rm kp}$;

3) расположение экспериментальных значений $P_{\rm kp}$ и $E_{\rm kp}$ на единой абсциссе $h_{\rm kp}$ предусматривает аналитическую связь между ними не только в критических условиях инициирования, но и для всех параметров разрушений зарядов, P_0 и E_0 , найденных при заданной толщине h_0 . Она записывается в виде (2) или в общем виде как

1

$$E_0 = a P_0^2, \ a = 5S^2/K = 14.0 \ \text{Дж}/\Gamma\Pi a^2,$$
 (4)

если положить экспериментальные характеристики испытаний равными S = 0.785 см², K = 0.22 ГН/м, а величины P_0 и E_0 выражать в ГПа и Дж соответственно. Сплошной линией 3 на рис. 1 показана построенная по формулам (1), (4) левая ($h_0 \le h_{\rm kp}$) ветвь зависимости $H_{50}(h_0)$, а ее правая ветвь представлена как зеркальное отражение левой. Отсюда следует, что кривые зависимости $H(h_0)$ можно приближенно рассматривать как параболические функции для всех значений h_0 , близких к $h_{\rm kp}$.

О СТАНДАРТНЫХ МЕТОДАХ ИСПЫТАНИЙ

Согласно действующему ГОСТ 4545-88 испытания твердых ВВ на чувствительность к удару проводят по двум методам и в двух приборах: 1 и 2, называемых приборами с затрудненным и свободным истечением вещества соответственно [5].

ХИМИЧЕСКАЯ ФИЗИКА том 42 № 3 2023

Ударам подвергаются заряды постоянной массы m = 50 мг в приборе 1 и заряды с m = 100 мг в приборе 2. С помощью прибора 2 определяется нижний предел чувствительности, H_0 , т.е. проводятся испытания по типу, представленному выше как испытания по МКЭ. Полученные результаты для УДП приведены на рис. 3 (кривая 1). Из него видно, что заряд УДП толщиной 0.7 мм (m = 100 мг) взрывается при $H_0 = 16$ см, тогда как при толщине $h_{\rm KD} = 0.48$ мм (m = 70 мг) величина нижнего предела составляет $H_0 = 7.5$ см. Отсюда следует, что в данном показательном примере чувствительность УДП, определенная по ГОСТ, оказалась бы существенно недооцененной. Так же обстоит дело и с оценками чувствительности других ВВ, включая оценки, полученные в экспериментах с прибором 1. В лабораторных опытах с этим прибором [7] установлено, что значение $h_{\rm kp}$ зарядов тетрила, при котором частота их взрывов наиболее высока (до 100%), составляет 0.3 мм, тогда как рекомендуемые для испытаний по ГОСТ заряды тетрила должны иметь $h_{\rm kp} = 0.4$ мм, при которой частость взрывов составляет не более 45%.

Заметим, что для получения достаточно корректной оценки чувствительности ВВ по МКЭ можно не снимать полную кривую частостей взрывов, а ограничиться поиском минимального значения нижнего предела, варьируя толщину (массу) заряда. Таким способом определяется отрезок U-образной кривой с минимумом в точке $h_{\rm kp}$, по которой находились объективные показатели чувствительности BB к удару – величина $E_{\rm kp}$ и далее – $P_{\rm kp}$.

Корректная оценка чувствительности ВВ по методу 1, согласно которому находится процент взрывов при ударе груза с высоты 25 см, представляется более простой. Определяются частости взрывов в нескольких сериях опытов с зарядами различной массы (толщины) и выбирается наибольшая частость взрывов. Соответствующая ей толщина зарядов равна критической.

выводы

1. Уточнены физические механизмы процессов возбуждения взрыва, положенные в основу создания лабораторных методов критических давлений и энергий для испытаний твердых BB на чувствительность к удару. Экспериментально показано существование минимально возможного значения энергии удара для возбуждения взрыва заряда BB, которое принято в качестве критического для энергии инициирования.

2. Установлены недостатки стандартных методов испытаний BB, недооценивающих уровень их чувствительностей к удару, и предложены способы модификации существующих методов для приведения их к уровню корректных оценок.

Настоящая работа была выполнена в рамках Программы фундаментальных научных исследований РФ "Процессы горения и взрыва" (регистрационный номер 122040500073-4) и имела бюджетное финансирование.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Назин Г.М., Корсунский Б.Л.* // Хим. физика. 2021. Т. 40. № 3. С. 53.
- 2. *Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б. //* Хим. физика. 2020. Т. 39. № 3. С. 53.
- 3. Дубовик А.В. Хим. физика. 2020. Т. 40. № 8. С. 76.
- 4. Махов М.Н. Хим. физика. 2021. Т. 39. № 1. С. 23.
- 5. *Афанасьев Г.Т., Боболев В.К.* Инициирование твердых взрывчатых веществ ударом. М.: Наука, 1968.
- 6. Дубовик А.В. // Горение и взрыв. 2021. Т. 14. № 3. С. 130; https://doi.org/10.30826/CE21140312
- 7. Дубовик А.В. Чувствительность твердых взрывчатых систем к удару. М.: Изд-во РХТУ им. Д.И. Менделеева, 2011.
- 8. *Качанов Л.М.* Основы теории пластичности. М.: Наука, 1969.