УДК 543.422.8.063

ПОИНТЕРВАЛЬНЫЙ РАСЧЕТ КОЭФФИЦИЕНТОВ ПОГЛОЩЕНИЯ КАК СРЕДСТВО ПОВЫШЕНИЯ ПРАВИЛЬНОСТИ РЕНТГЕНОСПЕКТРАЛЬНОГО МИКРОАНАЛИЗА

© 2020 г. Ю. Г. Лаврентьев^{*a*}, *, Л. В. Усова^{*a*}, М. Ю. Лаврентьев^{*b*}, Н. С. Карманов^{*a*}

^аИнститут геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук просп. Академика Коптюга, 3, Новосибирск, 630090 Россия

^bCulham Centre for Fusion Energy Abingdon, OX14 3DB, United Kingdom *e-mail: micropro@igm.nsc.ru Поступила в редакцию 01.03.2019 г. После доработки 10.04.2019 г. Принята к публикации 09.12.2019 г.

Для повышения правильности рентгеноспектрального микроанализа предложено поинтервальное вычисление коэффициентов поглощения, когда для каждого интервала поглощения подбирается оптимальный способ расчета. Способ реализован при анализе породообразующих минералов в рамках РАР метода коррекции. Расчет коэффициентов поглощения на участке до *K*-края выполняли по способу РАР, а в $K-L_1$ интервале — по способу Гейнриха с некоторыми уточнениями. Для уточнения использовали ряд природных минералов с высоким содержанием железа (и цинка). Практическое испытание подтвердило целесообразность и надежность поинтервального расчета коэффициентов поглощения.

Ключевые слова: электронно-зондовый рентгеноспектральный микроанализ, матричный эффект, методы коррекции, коэффициенты поглощения, породообразующие минералы.

DOI: 10.31857/S0044450220050126

В рентгеноспектральном микроанализе (PCMA) матричный эффект учитывают обычно с помощью поправочного фактора в виде трех поправок — на атомный номер, на поглощение и на характеристическую флуоресценцию. Важнейшей из них является поправка на поглощение, особенно при анализе в длинноволновой области спектра. Правильность поправки на поглощение определяется выбором как метода коррекции, так и способа расчета коэффициентов поглощения µ/ρ.

Известные способы расчета коэффициентов поглощения основаны на функциональной зависимости μ/ρ от длины волны или от энергии в виде степенной функции или полинома. Параметры функции зависят от атомного номера поглотителя и меняют свои значения при переходе от одного интервала поглощения к другому. Опыт показывает, что правильность расчета в разных интервалах поглошения различна, так что использование единого способа расчета μ/ρ может оказаться удачным в одних матрицах и неудачным в других. Целесообразно поэтому обратиться к более гибкому, комбинированному расчету μ/ρ: в разных интервалах поглощения использовать разные способы. Такой поинтервальный расчет уже был реализован нами [1] с обнадеживающим результатом при РСМА породообразующих минералов с использованием РАР метода коррекции. Относительная погрешность анализа не превышала 1%, если аналитическая линия поглощалась преимушественно на участке до К-края элементов матрицы, и использовался одноименный способ расчета коэффициентов поглощения. Однако при расположении аналитической линии в $K-L_1$ интервале, т.е. при наличии бинарного матричного эффекта (поглощение + атомный номер), погрешность заметно возрастала, причем величина и даже знак погрешности зависели от длины волны. Уточнение коэффициентов поглощения элементов, вызывающих бинарный эффект, улучшило результаты, но достоверность уточнения была ограничена крайне незначительным набором опытных данных. Расширение этого набора и получение на его основе более обоснованного способа расчета коэффициентов поглощения в К-L₁ интервале составляют содержание данного сообщения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

К стандартным образцам состава, применяемым в РСМА, предъявляют довольно жесткие требования [2], что в значительной степени ограничивает возможность их подбора как непосредственно для анализа, так и для различного рода градуировок. Упомянутое выше исследование [1], например, было выполнено с помощью всего лишь двух образцов сравнения. В данной работе мы решили поставленную задачу, расширив круг образцов сравнения путем использования ряда природных минералов с высоким содержанием железа и отчасти цинка.

Уточнение μ/ρ для МgКα- и SiKα-линий провели. используя особенности состава природных оливинов, подавляющее число которых относится к изоморфному ряду форстерит Mg₂SiO₄ – фаялит Fe₂SiO₄. Пренебрегая примесями с содержанием в сотые доли процента и менее, запишем кристаллохимическую формулу оливина в виде $2MeO \cdot SiO_2$, где под Me подразумеваются двухвалентные металлы: Mg, Fe, Ni, Mn, Ca. Исходя из специфики РСМА, элементы, входящие в состав оливина, можно разделить на две группы. В одну из них входят Mg и Si с длинноволновыми аналитическими Кα-линиями, коэффициенты поглощения которых в К-L₁ интервале нуждаются в уточнении. Оставшиеся элементы образуют вторую группу, их определение не вызывает заметных трудностей. Используя присущие оливину стехиометрические соотношения, нетрудно показать, что массовые концентрации с (%) элементов первой группы, а точнее их оксидов, могут быть представлены как функции концентраций элементов второй группы:

$$\begin{split} c_{\rm MgO} &= 57.294 - 0.8125 c_{\rm FeO} - 0.8034 c_{\rm NiO} - \\ &\quad - 0.8156 c_{\rm MnO} - 0.8799 c_{\rm CaO}, \\ c_{\rm SiO_2} &= 42.706 - 0.1875 c_{\rm FeO} - 0.1966 c_{\rm NiO} - \\ &\quad - 0.1844 c_{\rm MnO} - 0.1201 c_{\rm CaO}. \end{split}$$

Отсюда ясно, что, определив с достаточной точностью содержание FeO, NiO, MnO и CaO, можно получить сопоставимые по точности данные по содержанию MgO и SiO₂ и использовать в дальнейшем проанализированные образцы в качестве стандартных образцов состава.

Для исследования отобрали оливины из сибирских траппов (коллекция В.В. Рябова), отличающиеся повышенной железистостью. Всего отобрали 48 образцов, содержание FeO в них изменялось от 22 до 53%, а MgO – соответственно от 39 до 13%. Кроме того, в выборку добавили магнезиальный ($c_{FeO} = 9.5\%$) оливин CH-1, регулярно применяемый в качестве образца сравнения в текущей аналитической работе. Отобранные образцы анализировали по общепринятой методике [3] на микроанализаторах JXA-8100 и JXA-8230 (напряжение 20 кВ, ток 100 нА, время счета 10 с, определяемые оксиды: MgO, SiO₂, FeO, NiO, MnO, CaO; образцы сравнения – чистые оксиды, для MnO – марганцевый гранат, для СаО — диопсид). На каждом приборе измерения повторяли дважды с интервалом в несколько дней. Результаты измерений в виде относительных интенсивностей усредняли и использовали для дальнейшей обработки. Коэффициент вариации, характеризующий разброс отдельных результатов, составил 1.03, 0.62 и 0.76% соответственно для MgO, SiO₂ и FeO, что примерно отвечает ранее установленной [3] воспроизводимости РСМА. Точность средних значений, очевидно, выше. К полученному массиву относительных интенсивностей добавили данные [4] для фаялита и Ni₂SiO₄. В итоге представительная выборка для дальнейшей обработки содержала результаты измерений для 51 образца.

Сформированный массив относительных интенсивностей служил входным файлом для программы КАРАТ [5], с помощью которой рассчитывали состав проанализированных образцов. Расчет выполняли, варьируя различные сочетания методов коррекции и способов расчета коэффициентов поглощения. Полученные концентрации MgO и SiO₂ сравнивали с результатами расчета по приведенным выше формулам, принимая последние за действительные значения. Среднее расхождение Δc и коэффициент вариации V по выборке принимали за метрологические характеристики выбранной схемы коррекции. В первую очередь рассматривали РАР- и ZAF-методы коррекции, входящие в базовые комплекты программного обеспечения современной аппаратуры для РСМА.

Полученные результаты приведены в табл. 1. Наибольший интерес вызывают данные по РАРметоду коррекции, который в сочетании с одноименным способом расчета μ/ρ обеспечил хорошие показатели при поглощении аналитической линии на участке до К-края элементов матрицы. Как свидетельствуют данные табл. 1, при поглощении в $K - L_1$ интервале для всех сравниваемых способов расчета µ/р характерно завышение содержания MgO и занижение содержания SiO_2 , хотя абсолютная величина расхождений для разных способов различна. Оправданным поэтому выглядит выполненное [1] в качестве первого приближения раздельное изменение коэффициентов поглощения для MgKa- и SiKa-линий. На рис. 1 представлен графический пример зависимости метрологических характеристик от коэффициента поглощения аналитических линий в К-L1 интервале, точнее от дополнительного множителя $K_{\mu/\rho}$ к расчетному значению коэффициента. Видно, что точка минимума на кривой $V(K_{\mu/\rho})$ и точка пересечения кривой $\Delta c(K_{\mu/\rho})$ (фактически прямой) с осью абсцисс могут быть установлены достаточно надежно. Полученные данные для различных сочетаний методов коррекции и способов расчета μ/ρ внесены в табл. 1.

Метод коррекции	Способ расчета µ/р*		Определяемый компонент								
				MgO		SiO ₂					
	до <i>К</i> **	<i>K</i> – <i>L</i> ₁ **	$K_{\mu/ ho}$	$\Delta c, \%$	<i>V</i> , отн. %	$K_{\mu/ ho}$	$\Delta c, \%$	<i>V</i> , отн. %			
PAP	PAP	PAP	1	1.50	5.80	1	-0.18	0.57			
	EBL	EBL	1	0.27	1.11	1	-0.76	2.18			
	H86	H86	1	0.75	2.84	1	-0.13	0.47			
	PAP	EBL	1	0.24	1.01	1	-0.62	1.80			
			0.985	0.01	0.38	1.11	0.01	0.52			
	PAP***	H86	1	0.72	2.74	1	-0.14	0.47			
			0.93	0.0	0.38	1.035	0.0	0.40			
ZAF	H66	H66	1	1.21	4.44	1	0.80	2.46			
	EBL	EBL	1	-0.69	2.60	1	-0.90	2.51			
	H66	EBL	1	-0.40	1.49	1	-0.11	0.56			
			1.05	0.02	0.40	1.01	-0.01	0.51			

Таблица 1. Метрологические характеристики – среднее расхождение Δc и коэффициент вариации V – методов коррекции при РСМА оливинов в зависимости от способа расчета коэффициентов поглощения μ/ρ

* EBL – способ Эбеля [6], H86 – способ Гейнриха [7], H66 – способ Гейнриха [8]; ** интервалы поглощения; *** жирным шрифтом выделены способы расчета μ/ρ и значения корректирующего множителя $K_{\mu/\rho}$, рекомендуемые для практического использования.

Для дальнейшего испытания выбрали сочетание метода РАР со способами РАР и Н86, поскольку метод коррекции РАР обеспечивает хорошую поправку на эффект атомного номера [1], а способ Н86 допускает наименьшие значения корректирующего множителя к расчетному значению коэффициента поглощения SiKα-линии. Такой комбинированный способ расчета коэффициентов поглощения будем называть способом PHE (PAP-Heimrich-Ebel¹).

Рассматривали и метод коррекции ZAF. Известно [9], что наилучшие показатели при поглощении аналитической линии на участке до *К*края элементов матрицы метод обеспечивает при расчете μ/ρ с помощью известного способа Гейнриха [8] (способ H66). Из материалов табл. 1 следует, что использование оптимизированного способа Эбеля [6] (способ EBL) для расчета μ/ρ в *K*- L_1 интервале позволяет получить для метода ZAF метрологические характеристики, практически эквивалентные характеристикам метода РАР.

Уточнение μ/ρ для AlKa-линии провели с помощью природных алюминатов железа и цинка – герцинита FeAl₂O₄ и ганита ZnAl₂O₄. Герцинит был найден В.В. Рябовым в интрузии Кунгтугун на севере Сибирской платформы. Нам он был передан в виде двух петрографических шлифов. В одном из них X-56 герцинит был представлен мелкими (30–50 мкм) минеральными выделениями характерного угловатого вида, во втором X-120В — довольно крупными (100 мкм и более) зернами неопределенной формы. Микрозондовый анализ шлифов выполнили на микроанализаторах JXA-8100 и JXA-8230 аналогично исследованию оливинов также с использованием образцов сравнения в виде чистых оксидов. Разброс результатов измерения основных компонентов Al_2O_3 и FeO характеризовался коэффициентами вариации соответственно 1.7 и 2.0%, что свиде-

¹ Способ Эбеля мы используем для расчетов в L_3-M_1 , M_5-N_1 интервалах.

Рис. 2. Сумма концентраций компонентов при определении состава образцов герцинита в зависимости от величины корректирующего множителя $K_{\mu/\rho}$ к расчетному значению коэффициента поглощения: (о) – X-120, (•) – X-56.

тельствует о некоторой неоднородности анализируемого материала. В дальнейшей обработке использовали два средних состава, полученных усреднением 60—80 отдельных измерений. Задача обработки — получение опорного содержания Al_2O_3 — осложнялась наличием примесей и, основное, присутствием значительной части трехвалентного железа.

Нахождение железа в различных валентных состояниях вносит неопределенность в сумму найденных концентраций компонентов и требует внесения соответствующих корректив. Обозначим долю трехвалентного железа Fe⁺³ в общем железе Fe как *х*. Доля может быть найдена из условия баланса валентностей в молекуле путем

сопоставления формульных количеств двухвалентных $Fe^{+2} = (1 - x)Fe$, Mg, Mn и трехвалентных металлов Al, $Fe^{+3} = xFe$, Ti, Cr:

$$x = \frac{(Fe + Mg + Mn) - 0.5(Al + Ti + Cr)}{1.5Fe}.$$

Условие баланса дополняет непременное условие полного анализа минерала – равенство суммы концентраций 100%. В итоге возникает система из двух уравнений, решить которую проще всего графическим способом. Основываясь на результатах измерения, с помощью программы КАРАТ рассчитывали состав образцов герцинита, варьируя корректирующий множитель $K_{u/o}$ к коэффициенту поглощения AlK α -линии в $K-L_1$ интервале. Для каждого рассчитанного состава устанавливали содержание Fe₂O₃ и сумму концентраций компонентов. Зависимость суммы от величины $K_{\mu/\rho}$ позволяет, как видно из рис. 2, установить искомое значение корректирующего множителя, при котором значение суммы равно 100%. Оба образца герцинита приводят к одному решению: $K_{\mu/\rho} = 0.93$. Результаты расчета состава и кристаллохимической формулы, полученные при данном условии, представлены в табл. 2.

Образец ганита $ZnAl_2O_4$ был передан нам А.В. Вишневским из коллекции Центрального Сибирского геологического музея, где он находился как дар К.Р. Ковалева – исследователя Холоднинского свинцово-цинкового месторождения, расположенного в Северо-Байкальском районе. Препарат для анализа представлял собой аншлиф, где в ставролитовой матрице находились зерна ганита размером до 0.5 мм. Измерения вели на микроанализаторе JXA-8230. Разброс результатов характеризовался коэффициентом вариации 0.87, 3.4 и 2.4% соответственно для Al_2O_3 ,

Компонент	Герц	инит	-	Число атомов	Герц	-	
	X-56	X-120B	Ганит	в расчете на О равно 4	X-56	X-120B	I анит
SiO ₂	0.10	0.08	0.04	-	_	_	_
TiO ₂	0.39	2.14	0.01	Ti	0.009	0.049	—
Al_2O_3	51.38	47.95	54.84	Al	1.800	1.701	1.952
Cr ₂ O ₃	0.01	0.07	0.04	Cr	—	0.002	0.001
Fe ₂ O ₃	8.50	11.01	2.08	Fe ⁺³	0.190	0.249	0.047
FeO	38.63	37.58	4.96	Fe ⁺²	0.961	0.945	0.125
MnO	0.04	0.04	0.07	Mn	0.001	0.001	0.002
MgO	0.86	1.18	1.15	Mg	0.038	0.053	0.052
ZnO	_	_	36.84	Zn	_	_	0.822
Сумма	99.91	100.05	100.03	Сумма	2.999	3.000	3.001

Таблица 2. Химический состав (%) природных алюминатов и расчет на кристаллохимическую формулу по результатам РСМА

FeO и ZnO, что указывает на небольшую неоднородность, вызванную изоморфными замещениями между цинком с одной стороны и железом + + магний с другой. Для обработки использовали состав, полученный усреднением 38 отдельных измерений, выполненных двумя партиями в разные дни. Сама обработка проходила аналогично обработке измерений для герцинита. Окончательный результат $K_{\mu/\rho} = 0.92$ практически совпадает с данными по оливинам (MgK α) и герциниту. Найденный состав ганита приведен в табл. 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Таким образом, на представительном экспериментальном материале мы показали, что применение поинтервального учета поглощения позволяет повысить правильность расчета поправочного фактора, если аналитические линии расположены на участках, примыкающих к К-краю элементов матрицы. Для практического применения мы рекомендуем использовать метод коррекции РАР в сочетании с вычислением массовых коэффициентов поглощения по способу РНЕ. Этот способ предполагает расчет по способу РАР, если поглощение аналитической линии происходит на участке до К-края, и по способу Гейнриха при поглощении в $K - L_1$ интервале. Кроме того, в способе Гейнриха целесообразно использовать корректирующие множители: 1.035 для SiKα-линии и 0.93 для AlK α -, MgK α - и, видимо, NaK α -линий, хотя последнее, строго говоря, нами не доказано ввиду отсутствия подходящих образцов сравнения. Вопрос об анализе в более длинноволновых интервалах поглощения, например $L_3 - M_1$, $M_5 - N_1$, остается открытым.

Рис. 3 дает возможность оценить, насколько различаются поправки, вычисленные по предлагаемому алгоритму и по общепринятому подходу методу РАР, входящему в типовое программное обеспечение микроанализаторов фирмы Сатеса. Видно, что абсолютная величина расхождения зависит от длины волны аналитической линии и от атомного номера элемента-поглотителя матрицы. Она растет в ряду Si $K\alpha$ -Na $K\alpha$ и в ряду K₂O-ZnO, достигая в предельном случае 15-20%. Следует иметь в виду, что данные рис. 3 соответствуют максимально возможному расхождению, когда малая примесь элемента определяется в матрице чистого оксида. На практике более реалистично содержание влияющего компонента на уровне 20-40% и менее, так что расхождение между поправками снижается соответственно в 5–2.5 раза.

В табл. 3–5 мы сопоставили результаты анализа ряда минералов, выполненные путем поинтервального расчета μ/ρ, с результатами расчета по общепринятому подходу. Измерения были выполнены в обычных описанных выше условиях. Табл. 3 вклю-

Рис. 3. Относительная величина поправки *P*_{PHE}/*P*_{PAP} при вычислении коэффициентов поглощения по предлагаемому алгоритму в зависимости от матрицы и аналитической линии.

чает минералы, состав которых близок к стехиометрическому. Анализы двух первых – дистена Al₂SiO₅ и шпинели MgAl₂O₄ - основаны на выполненных ранее [4] измерениях. Фактически эти минералы представляют собой бинарные образцы. в которых одна из аналитических линий испытывает достаточно сильное поглощение на участке, непосредственно прилегающем к К-краю поглощения партнера по бинару. Известно [1, 4], что метод РАР обеспечивает в таких случаях достаточную правильность определений. Из данных табл. 3 видно, что расчет по способу РНЕ не ухудшает результатов. Анализы третьего минерала андрадита $Ca_3Fe_2Si_3O_{12}$ — примечательны различием в содержании SiO₂, причем результат расчета по способу РНЕ ближе к стехиометрическому значению. В табл. 4 представлены результаты анализа гранатов с высоким содержанием железа: двух Mn-гранатов, применяемых в качестве образцов сравнения, и трех пироп-альмандиновых гранатов из коллекции В.А. Минина. Какие-либо опорные данные здесь отсутствуют, но анализы по способу РНЕ выглядят предпочтительней как по суммам концентраций компонентов, так и по соотношениям между ними. Табл. 5 иллюстрирует анализ эгирина $NaFeSi_2O_6$ из массива Сынныр (Забайкалье), предоставленного нам Л.И. Паниной. Здесь важно отметить, что содержание Na₂O, рассчитанное по способу РНЕ, более реалистично и хорошо отвечает кристаллохимической формуле минерала – сумма формульных количеств Na + Ca = 0.997 близка к единице. Результат свидетельствует, что принятое значение корректирующего множителя $K_{\mu/\rho} = 0.93$ является приемлемым и для Νа*К*α-линии.

В целом проведенное испытание на примере РСМА силикатов подтвердило целесообразность

Компонент		Дистен	Al ₂ SiO ₅		Шпинель MgAl ₂ O ₄				Андрадит Ca ₃ Fe ₂ Si ₃ O ₁₂			
	<i>K</i> *	PAP	PHE	стех.**	<i>K</i> *	PAP	PHE	стех.**	<i>K</i> *	PAP	PHE	стех.**
SiO ₂	24.92	37.25	37.21	37.07	_	_	_		30.13	35.04	35.71	35.47
Al_2O_3	62.02	63.06	63.13	62.83	54.32	70.99	71.18	71.67	0.22	0.29	0.29	
Fe ₂ O ₃	0.10	0.11	0.11		_	_	_		28.26	31.06	30.91	31.43
FeO	_	—	_		0.40	0.45	0.45		—	_	_	
MgO	—	—	—		26.47	28.22	27.96	28.33	0.13	0.21	0.20	
CaO	_	—	—		-	—	_		35.02	33.05	33.14	33.10
Сумма	87.04	100.42	100.45	100.00	80.19	99.66	99.59	100.00	93.76	99.65	100.25	100.00
Si		1.001	1.000			_	—			2.974	3.005	
Al		1.997	1.999			1.995	1.999			0.029	0.029	
Fe ³⁺		0.002	0.002			—	_			1.984	1.957	
Fe ²⁺		_	_			0.009	0.009			_	—	
Mg		_	_			0.998	0.993			0.027	0.025	
Ca		_	—			—	—			3.006	2.987	
Сумма		3.000	3.001			3.002	3.001			8.020	8.003	

Таблица 3. Результаты (%) рентгеноспектрального микроанализа минералов с составом, близким к стехиометрическому, в зависимости от способа расчета коэффициентов поглощения µ/р (PAP, PHE)

* Результат (%) измерения; ** содержание по стехиометрии минерала.

		Mn-гр	анаты		Пироп-альмандиновые гранаты					
Компонент	ИГЕМ		GRAN-25		M3-9		M3-64		M3-95	
	PAP	PHE	PAP	PHE	PAP	PHE	PAP	PHE	PAP	PHE
SiO ₂	36.07	36.40	36.87	37.14	39.58	39.80	38.72	38.96	37.58	37.86
TiO2	0.01	0.01	_	_	0.24	0.24	0.33	0.33	0.04	0.04
Al_2O_3	20.76	20.21	21.08	20.55	22.39	22.12	22.02	21.66	21.74	21.27
Cr ₂ O ₃	_	_	_	_	0.01	0.01	0.02	0.02	0.04	0.04
FeO	30.24	30.22	25.70	25.69	18.39	18.38	23.80	23.79	32.28	32.27
MnO	9.94	9.94	12.00	12.00	0.33	0.33	0.57	0.57	0.63	0.63
MgO	1.14	1.07	3.94	3.73	11.48	11.13	9.03	8.70	6.81	6.49
CaO	2.30	2.20	1.05	1.05	8.04	8.05	6.09	6.10	1.60	1.60
Сумма	100.36	100.05	100.64	100.16	100.46	100.06	100.58	100.13	100.32	100.20
Si	2.952	2.988	2.956	2.992	2.959	2.986	2.954	2.985	2.945	2.982
Ti	0.001	0.001	—	—	0.014	0.014	0.019	0.019	0.003	0.003
Al	2.002	1.955	1.992	1.951	1.973	1.956	1.980	1.956	2.008	1.974
Cr	_	_	_	_	0.001	0.001	0.001	0.001	0.003	0.003
Fe	2.070	2.075	1.723	1.731	1.150	1.153	1.519	1.524	2.116	2.126
Mn	0.689	0.691	0.815	0.819	0.021	0.021	0.037	0.037	0.042	0.042
Mg	0.139	0.131	0.471	0.448	1.279	1.245	1.027	0.993	0.796	0.762
Ca	0.193	0.194	0.090	0.091	0.644	0.647	0.498	0.501	0.134	0.135
Сумма	8.046	8.034	8.048	8.032	8.041	8.022	8.036	8.017	8.047	8.027

2020

Таблица 4. Результаты (%) рентгеноспектрального микроанализа гранатов с высоким содержанием железа (и марганца) в зависимости от способа расчета коэффициентов поглощения μ/ρ (PAP, PHE)

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 75 № 7

	Способ ра	асчета μ/ρ	Число атомов	Способ расчета μ/ρ		
Компонент	PAP PHE		в расчете на сумму катионов 4	PAP	PHE	
SiO ₂	52.20	52.57	Si	1.947	1.996	
TiO ₂	0.76	0.76	Ti	0.021	0.022	
Al ₂ O ₃	0.35	0.34	Al	0.016	0.015	
Fe ₂ O ₃	32.42	29.53	Fe ⁺³	0.911	0.844	
FeO	—	2.42	Fe ⁺²	—	0.077	
MnO	0.11	0.11	Mn	0.004	0.004	
MgO	0.84	0.80	Mg	0.047	0.045	
CaO	2.46	2.47	Ca	0.099	0.101	
Na ₂ O	13.20	12.17	Na	0.955	0.896	
Сумма	102.34	101.17	Сумма	4.000	4.000	

Таблица 5. Результаты (%) рентгеноспектрального микроанализа микроанализа эгирина NaFeSi₂O₆ в зависимости от способа расчета коэффициентов поглощения µ/р (PAP, PHE)

и надежность поинтервального расчета коэффициентов поглощения.

Работа выполнена в ЦКП Многоэлементных и изотопных исследований СО РАН в рамках государственного задания ИГМ СО РАН.

Авторы глубоко признательны геологам, сотрудникам Института геологии и минералогии СО РАН Л.И. Паниной, В.В. Рябову, А.В. Вишневскому, К.Р. Ковалеву, В.А. Минину за любезное предоставление образцов минералов для аналитических исследований и В.В. Шарыгину за расчет кристаллохимической формулы эгирина.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лаврентыев Ю.Г., Усова Л.В. К вопросу об учете матричного эффекта при рентгеноспектральном микроанализе породообразующих минералов // Журн. аналит. химии. 2018. Т. 73. № 1. С. 28. (Lavrent'ev Yu.G., Usova L.V. Problem of the account of matrix effect in electron probe microanalysis of rockforming minerals // J. Analyt. Chem. 2018. V. 73. № 1. Р. 42.)
- Лаврентьев Ю.Г., Романенко И.М., Новиков М.П., Усова Л.В., Королюк В.Н. Синтетические кристаллы TRPO₄ – образцы сравнения при количественном рентгеноспектральном микроанализе редкоземельных минералов // Журн. аналит. химии. 2011. Т. 66. № 9. С. 947. (Lavrent'ev Yu.G., Romanenko I.M., Novikov M.P., Usova L.V., Korolyuk V.N. Synthetic TRPO₄ crystals as reference samples in the quantitative X-ray electron probe microanalysis of rare-earth elements // J. Analyt. Chem. 2011. V. 66. № 9. P. 831.)
- 3. Лаврентьев Ю.Г., Королюк В.Н., Усова Л.В., Нигматулина Е.Н. Рентгеноспектральный микроанализ породообразующих минералов на микроанализаторе JXA-8100 // Геология и геофизика. 2015. Т. 56. № 10. С. 1813. (Lavrent'ev Yu.G., Korolyuk V.N.,

Usova L.V. Nigmatulina E.N. Electron probe microanalysis of rock-forming minerals with JXA-8100 electron probe microanalyzer // Russ. Geol. Geophys. 2015. V. 56. \mathbb{N} 10. P. 1428.)

- 4. Лаврентьев Ю.Г., Усова Л.В. Выбор оптимального метода расчета поправочных факторов при рентгеноспектральном микроанализе породообразующих минералов // Журн. аналит. химии. 1996. Т. 51. № 3. С. 323. (Lavrent'ev Yu.G., Usova L.V. Choosing the optimum method of calculating correction factors in X-ray spectral microanalysis of rock-forming minerals // J. Analyt. Chem. 1996. V. 51. № 3. Р. 300.)
- 5. Лаврентьев Ю.Г., Усова Л.В. Новая версия программы КАРАТ для количественного рентгеноспектрального микроанализа // Журн. аналит. химии. 1994. Т. 49. № 5. С. 462. (*Lavrent'ev Yu.G., Usova L.V.* A new version of the CARAT program for quantitative X-ray spectral microanalysis // J. Analyt. Chem. 1994. V. 49. № 3. P. 417.)
- Ebel H., Svagera R., Ebel M.H., Shaltout A., Hubbel J.H. Numerical description of photoelectric coefficients for fundamental parameter programs // X-Ray Spectrom. 2006. V. 32. P. 442.
- Heinrich K.F.J. Mass absorption coefficients in electron probe microanalysis / Proc. 11th Int. Congr. X-ray Optics and Microanalysis / Eds. Brown J.D., Packwood R.H. Ontario Univ. Press., 1987. P. 67.
- Heinrich K.F.J. X-ray absorption uncertainty / The Electron Microprobe / Eds. McKinley T.D., Heinrich K.F.J., Wittry D.B. N.Y.: Wiley, 1966. P. 296.
- 9. Королюк В.Н., Лаврентьев Ю.Г., Усова Л.В., Нигматулина Е.Н. О точности электронно-зондового анализа породообразующих минералов на микроанализаторе JXA-8100 // Геология и геофизика. 2008. Т. 49. № 3. С. 221. (Korolyuk V.N., Lavrent'ev Yu.G., Usova L.V., Nigmatulina E.N. JXA-8100 microanalyzer: accuracy of analysis of rock-forming minerals // Russ. Geol. Geophys. 2008. V. 49. № 3. Р. 165.)