— ОРИГИНАЛЬНЫЕ СТАТЬИ —

УДК 543.51

ИССЛЕДОВАНИЕ СТРУКТУРНЫХ ОСОБЕННОСТЕЙ ТРИТЕРПЕНОВЫХ САПОНИНОВ АРАЛИИ МАНЬЧЖУРСКОЙ МЕТОДОМ ЖИДКОСТНОЙ ХРОМАТО-МАСС-СПЕКТРОМЕТРИИ ВЫСОКОГО РАЗРЕШЕНИЯ

© 2019 г. М. Ю. Синицын^{*a*, *}, А. В. Аксенов^{*a*}, М. В. Таранченко^{*a*}, И. А. Родин^{*b*}, А. Н. Ставрианиди^{*b*}, А. М. Антохин^{*a*}, О. А. Шпигун^{*b*}

^аНаучный Центр "Сигнал" 107014 Россия, Москва, ул. Большая Оленья, 8 ^bМосковский государственный университет имени М.В. Ломоносова, химический факультет 119991 Россия, Москва, Ленинские горы, 1, стр. 3 *e-mail: maksimsinitsyn@gmail.com Поступила в редакцию 11.04.2018 г. После доработки 11.04.2019 г. Принята к публикации 11.04.2019 г.

Методом высокоэффективной жидкостной хроматографии в сочетании с масс-спектрометрическим детектированием высокого разрешения исследованы масс-спектральные характеристики тритерпеновых сапонинов аралии маньчжурской. Оптимизированы условия подготовки экстрактов для определения содержания тритерпеновых сапонинов в растительном сырье. Проведено сравнение полученных масс-спектральных характеристик тритерпеновых сапонинов с описанными в литературе, предложены структурные формулы исследуемых соединений.

Ключевые слова: аралия высокая (*Aralia elata*), аралия маньчжурская (*Aralia mandshurica*), тритерпеновые сапонины, ВЭЖХ, масс-спектрометрия высокого разрешения, жидкостная экстракция.

DOI: 10.1134/S0044450219110100

В настоящее время широкое применение находят биологически активные добавки на основе растительного сырья, в частности, растения рода Аралия широко используют в восточной медицине. Данный род включает в себя более 70 различных видов растений. Одним из них, произрастающим в том числе и на территории России, является аралия маньчжурская (*Aralia mandshurica*), также известная как аралия высокая (*Aralia elata*) [1]. В качестве сырья для изготовления биологически активных добавок обычно используют корни, реже – кору или листья. Препараты, изготовленные на их основе, обладают тонизирующим, адаптогенным, гонадотропным, радиопротекторным, антистрессорным эффектом [1].

Установлено, что основными биологически активными веществами, входящими в состав растений рода Аралия, являются аралозиды — гликозиды олеаноловой кислоты, относящиеся к классу тритерпеновых сапонинов [2]. Структура данных соединений включает тритерпеновый скелет, к которому присоединены один или несколько углеводных фрагментов (схема 1). Согласно данным [3–10], в структуру аралозидов, идентифицированных в различных растениях рода Аралия, входят шесть различных углеводных фрагментов: глюкоза, галактоза, ксилоза, рамноза, глюкуроновая кислота и арабиноза.

Известно, что в зависимости от региона произрастания изменяется химический состав растений, принадлежащих к одному виду, что, в свою очередь, может оказывать значительное влияние на биологическую активность препаратов, созданных на их основе. Таким образом, для прогнозирования биологической активности добавок на основе аралии маньчжурской необходимо разработать способ определения аралозидов в используемом растительном сырье.

Рис. 1. Масс-спектр аралозида А в режимах регистрации положительных (а) и отрицательных ионов (б). Ole – олеаноловая кислота, Glc – глюкоза, Ara – арабиноза, GlcA – глюкуроновая кислота.

Цель настоящей работы — выбор условий максимально полного извлечения аралозидов из растительного сырья, исследование влияния параметров ионизации на фрагментацию исследуемых соединений и их идентификация в экстрактах по масс-спектральным характеристикам.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты и растворители. В работе использовали стандартный образец аралозида А (ChemFaces, Китай, кат. номер CFN90542), высушенные корни аралии маньчжурской (ООО "Компания Хорст") в качестве объекта исследования, метанол "для хроматографии" (Chromasolv®, Merck, Германия), ацетонитрил "для хроматографии" (Chromasolv®, Merck, Германия), муравьиную кислоту (Fluka, Швейцария), деионированную воду с удельным сопротивлением 18.2 мОм/см, полученную с помощью установки NanoPure (Thermo Scientific, США).

Оборудование. Исследование проводили на жидкостном хроматографе Dionex Ultimate 3000

(Thermo Scientific, Германия), оснащенном автосамплером, градиентным насосом, дегазатором и блоком для термостатирования хроматографической колонки, с гибридным масс-спектрометром QExactive с орбитальной ионной ловушкой высокого разрешения (Thermo Scientific, Германия) и источником ионизации IonMax HESI-II. В качестве распыляющего и вспомогательного газов использовали азот от генератора азота Genius 1022 (Peak Scientific, США). Данные обрабатывали с применением программного обеспечения XCalibur версии 2.2 (Thermo Scientific, США).

Условия хроматографического разделения. Разделение выполняли на колонке с обращенно-фазовым сорбентом Hypersil Gold aQ (Thermo Scientific, Германия) длиной 150 мм, внутренним диаметром 2.1 мм, размером зерна сорбента 3 мкм. Колонку термостатировали при 30°С, расход подвижной фазы 0.5 мл/мин. В качестве подвижной фазы использовали 0.1%-ный раствор муравьиной кислоты в смеси ацетонитрил—вода (5:95, по объему) (элюент А) и 0.1%-ный раствор муравьиной кислоты в ацетонитриле (элюент В). Хроматографическое разделение веществ проводили в режиме градиентного элюирования: 0–1 мин – 5% В, 1–7 мин – 60% В, 7–8 мин – 60% В, 8–9 мин – 5% В. Продолжительность разделения с учетом стабилизации системы 10 мин. Объем вводимой пробы 0.001 мл.

Пробоподготовка. К навеске измельченного сырья массой 100 мг прибавляли 10 мл экстрагента, перемешивали на ротационном миксере в течение 15 мин и выдерживали в ультразвуковой ванне 30 мин. Полученные экстракты фильтровали через мембранный фильтр с диаметром пор 0.2 мкм и анализировали. Изучена экстракция смесью метилового спирта и воды в различных пропорциях (0:100, 20:80, 40:60, 60:40, 80:20, 100:0).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изучение масс-спектров аралозида А. Массспектры стандартного образца получали в условиях ионизации электрораспылением: напряжение на капилляре 3.5 кВ, температура капилляра 320°С, температура распылителя 280°С, расход распыляющего газа (азот) 0.40 л/мин, расход вспомогательного газа (азот) 0.1 л/мин, расход вспомогателя (азот) 0.05 л/мин. Детектировали в диапазоне значений m/z 100–1500, регистрировали положительно и отрицательно заряженные ионы с разрешением 35000 (на половине высоты) и точностью определения масс не менее 5 млн⁻¹.

В режиме регистрации положительно заряженных ионов формируются масс-спектры, в которых присутствуют ионы, соответствующие протонированной молекуле, а также ионы, образованные в процессе последовательного отщепления углеводных фрагментов (рис. 1). Предположительный процесс фрагментации аралозида А представлен на схеме 2.

Масс-спектр, полученный в режиме регистрации отрицательно заряженных ионов, содержит ионы, соответствующие депротонированной молекуле, а также двухзарядному аддукту депротонированной молекулы с муравьиной кислотой (рис. 1).

Оптимизация условий масс-спектрометрического детектирования. Наличие в масс-спектре, полученном в режиме регистрации положительно заряженных ионов, пика, соответствующего фрагменту олеаноловой кислоты с отщепленной молекулой воды, позволяет проводить групповую идентификацию соединений класса тритерпеновых сапонинов. С использованием стандартного образца аралозила А изучено влияние температуры распылителя, напряжения на капилляре и температуры капилляра на регистрируемые масс-спектры. Зависимость соотношения интенсивностей пиков со значениями m/z, соответствующими протонированной молекуле, а также ионам, образованным в результате отщепления одного или нескольких углеводных фрагментов, от параметров ионизации представлена в табл. 1. Анализ привеленных данных показывает, что изменение температуры распылителя и напряжения на капилляре существенно не влияет на соотношение интенсивностей фрагментных пиков. Снижение температуры капилляра приводит к постепенному снижению интенсивности пиков, соответствующих протонированному фрагменту олеаноловой кислоты с отщепленной молекулой воды $([(Ole - H_2O) + H]^+)$, в то время как интенсивности пиков, соответствующих фрагментам с одним и двумя отщепленными углеводными фрагментами, возрастают.

Фрагментный ион,	Температура распылителя, °С				Напряжение на капилляре, кВ			Температура капилляра, °С				
<i>m/2</i> ,	0	100	200	280	2	3	4	200	150	100	70	30
$[M + H]^+$ 927.4953	2.0	1.5	1.2	0.72	1.0	1.2	0.72	0.23	4.7	7.6	41.0	39.0
$[M - Ara + H]^+$ 795.4531	0.39	0.27	0.18	0.10	0.23	0.18	0.10	0.10	0.58	0.89	9.4	8.6
$[M - Glc + H]^+$ 765.4425	1.2	0.89	0.58	0.33	0.65	0.58	0.33	0.34	3.1	4.3	12.0	12.0
$[M - Glc - Ara + H]^+$ 633.4002	16.0	16.0	15.0	12.0	15.0	15.0	12.0	12.0	24.0	27.0	14.0	14.0
$[(Ole - H_2O) + H]^+$ 439.3576	80.0	81.0	83.0	86.0	82.0	83.0	86.0	86.0	67.0	60.0	25.0	26.0

Таблица 1. Влияние параметров ионизации на соотношение интенсивностей пиков (*I*_{отн}, %), соответствующих фрагментным ионам аралозида А

Примечание: Ara – арабиноза, Glc – глюкоза, Ole – олеаноловая кислота.

[(Ole-H₂O) + H]⁺ *m*/*z* = 439.3571 Схема 2. Процесс фрагментации аралозида А.

В результате проведенного эксперимента для масс-спектрометрического детектирования вы-

брали следующие условия: напряжение на капилляре 4 кВ, температура капилляра 70°С, темпера-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 74 № 11 2019

Рис. 2. Масс-спектр аралозида А, полученный в оптимизированных условиях: (а) – режим регистрации положительных ионов, (б) – режим регистрации отрицательных ионов.

тура распылителя 280°С, расход распыляющего газа (азот) 0.40 л/мин, расход вспомогательного газа (азот) 0.1 л/мин, расход газа-осушителя (азот) 0.05 л/мин.

В приведенных выше условиях масс-спектр аралозида А, полученный в режиме регистрации положительно заряженных ионов, содержит пики, соответствующие протонированной молекуле, фрагментным ионам с одним и двумя отщепленными углеводными фрагментами, а также протонированному фрагменту олеаноловой кислоты с отщепленной молекулой воды (рис. 2). Масс-спектр, полученный в режиме регистрации отрицательно заряженных ионов, содержит пики, соответствующие депротонированной молекуле, аддукту депротонированной молекулы с муравьиной кислотой и двухзарядному депротонированному аддукту молекулы с муравьиной кислотой (рис. 2).

В дальнейшем поиск аралозидов в экстрактах осуществляли по масс-спектрам, полученным в режиме регистрации положительно заряженных ионов. В качестве характеристичного иона, общего для всех соединений данного класса, использовали ион с *m/z* 439.3570, соответствующий протонированному фрагменту олеаноловой кислоты с отщепленной молекулой воды. Для установления молекулярной массы неизвестных соединений использовали масс-спектры, полученные в режиме регистрации отрицательно заряженных ионов. Пара пиков, соответствующих депротонированной молекуле, а также ее аддукту с муравьиной кислотой, позволяла определить молекулярную массу исследуемого соединения.

Оптимизация условий экстрагирования. Наиболее простым и универсальным способом выделения органических соединений из растительного сырья является жидкостная экстракция. В качестве экстрагентов для извлечения аралозидов использовали бутанол [3], смесь этанол—вода [4], метанол [5].

Изучали экстракцию аралозидов из высушенных корней аралии маньчжурской смесями метанола и воды в различном соотношении. Проводили однократную и двукратную экстракцию аралозидов из образцов высушенных корней. Исходя из содержания аралозида А в полученных экстрактах,

sionidob of coefubu onerparentu (ii - 5,1 - 6.55)					
Вода : метанол, об. %	Однократная экстракция	Повторная экстракция			
100 : 0	79 ± 2	16.0 ± 0.4			
80:20	79 ± 2	17.0 ± 0.4			
60:40	73 ± 2	21.0 ± 0.5			
40:60	88 ± 3	9.7 ± 0.5			
20:80	92 ± 3	7.0 ± 0.5			
0:100	96 ± 3	4.0 ± 0.5			

Таблица 2. Зависимость степени извлечения (%) аралозидов от состава экстрагента (n = 3, P = 0.95)

Таблица 3. Зависимость степени извлечения аралозидов от времени воздействия ультразвука (*n* = 3, *P* = 0.95)

<i>t</i> , мин	<i>R</i> , %,
5	92 ± 3
10	94 ± 3
20	94 ± 3
30	96 ± 3
60	87 ± 3
90	93 ± 3
120	92 ± 3

оценивали степень извлечения аралозидов при однократном и двукратном экстрагировании, результаты приведены в табл. 2. Видно, что аралозиды из растительного сырья наиболее эффективно извлекаются чистым метанолом.

Исследовали влияние ультразвука на полноту экстракции аралозидов. С этой целью готовили ряд экстрактов в метаноле, которые выдерживали в ультразвуковой ванне в течение 5, 10, 20, 30, 60, 90 и 120 мин. Влияние времени воздействия ультразвука на степень извлечения иллюстрирует табл. 3. Как видно, чрезмерное увеличение продолжительности воздействия ультразвука приводит к снижению содержания аралозида A в экстрактах. Полученные результаты можно объяснить частичным разрушением аралозидов при обработке образцов ультразвука. Оптимальное время воздействия ультразвука составило 30 мин, а степень извлечения аралозидов при этом – 96%.

Изучение структуры аралозидов в экстракте высушенных корней аралии маньчжурской. Масс-хроматограмма экстракта корней аралии маньчжурской по выделенному иону (режим регистрации положительно заряженных ионов) с m/z 439.3570 представлена на рис. 3. По этому масс-спектру устанавливали присутствие или отсутствие различных углеводных фрагментов в исследуемом соединении. Из масс-спектров, полученных в режиме регистрации отрицательно заряженных ионов, устанавливали молекулярные массы исследуемых соединений. С использованием данного подхода определили углеводные фрагменты, входящие в структуру аралозидов, извлеченных из высушенных корней аралии маньчжурской. Результаты представлены в табл. 4.

Поскольку ксилоза и арабиноза, а также глюкоза и галактоза имеют одинаковую молекулярную массу, однозначно установить, какие из данных углеводов входят в структуру исследуемых соединений, исходя из масс-спектров, не представляется возможным, что показано в табл. 4 обозначениями Хуl (Ara) и Glc (Gal).

Так как данные о масс-спектральных характеристиках аралозидов в литературе отсутствуют, сравнивали масс-спектры исследуемых соединений с описанными, исходя из их молекулярной массы и последовательности углеводных фрагментов, входящих в их структуру. Соединение 1 (время удерживания $t_{\rm R} = 8.38$ мин) содержит фрагмент глюкозы (либо галактозы). Масса протонированного иона молекулы [M + H]⁺ составляет 619.4216 Да. В работе [7] описано соединение подобного состава: 28-О-[β-D-глюкопиранозид] олеаноловой кислоты ($C_{36}H_{59}O_8$, рассчитанная масса 619.4204 Да, погрешность определения массы $\Delta = 1.816$ м. д.).

Соединение 2 ($t_{\rm R} = 7.92$ мин) содержит фрагмент глюкуроновой кислоты. Масса [M + H]⁺ составляет 633.4005 Да. В работе [7] описано соединение подобного состава: 3-О-[β-D-глюкуронопиранозид] олеаноловой кислоты (C₃₆H₅₇O₉, рассчитанная масса 633.3997 Да, $\Delta = 1.169$).

Соединение 3 ($t_{\rm R} = 7.62$ мин) содержит последовательно фрагменты глюкуроновой кислоты и ксилозы (либо арабинозы). Масса [M + H]⁺ составляет 765.4429 Да. В работе [7] описано два соединения подобного состава: 3-О-[α -L-арабинофуранозил-(1–4) β -D-глюкуронопиранозид] олеаноловой кислоты (нарциссифлорин); 3-О-[α -L-арабинопиранозил-(1–3) β -D-глюкуронопиранозид] олеаноловой кислоты (С₄₁H₆₅O₁₃, рассчитанная масса 765.4422 Да, $\Delta = 1.256$).

Соединения 4 и 7 ($t_{\rm R}$ = 7.33 и 6.14 мин соответственно) содержат последовательно фрагменты глюкуроновой кислоты и глюкозы (или галактозы). Массы протонированных молекул [M + H]⁺ составляют 795.4539 Да (соединение 4) и 795.4553 Да (соединение 7). В работе [7] описаны два соединения подобного состава: 3-О-[α -L-галактопиранозил-(1–3) β -D-глюкуронопиранозид] олеаноло-

Рис. 3. Масс-хроматограмма экстракта высушенных корней аралии маньчжурской по выделенному иону (m/z = 439.3570) в режиме положительной ионизации.

вой кислоты и 3-О-[β -D-глюкуронопиранозид]-28-О-[β -D-глюкопиранозид] олеаноловой кислоты (чикусетсусапонин IVa) [C₄₂H₆₇O₁₄, рассчитанная масса 795.4525 Да, $\Delta = 1.744$ (соединение 4), $\Delta = 3.428$ (соединение 7)].

Соединения 5, 6 и 8 ($t_{\rm R}$ = 7.15, 6.88 и 5.96 мин соответственно) содержат последовательно фрагменты глюкуроновой кислоты, глюкозы (либо галактозы) и ксилозы (либо арабинозы). Массы протонированных молекул [М + Н]⁺ составляют 927.4962 Да (соединение 5), 927.4960 Да (соединение 6) и 927.4966 Да (соединение 8). Исходя из времени удерживания, можно предположить, что соединение 8 является аралозидом A (3-O-[α-L-apaбинопиранозил-(1–4) β-D-глюкуронопиранозид] 28-О-[β-D-глюкопиранозид] олеаноловой кислоты), исследованным в данной работе. В работе [7] описано также соединение с подобными углеводными фрагментами, входящими в его состав: 3-О-[β-D-глюкопиранозил (1-3) α-L-арабинофуранозил (1-4) β-D-глюкуронопиранозид] олеаноловой кислоты (стипулеанозид R_1) $[C_{47}H_{75}O_{18},$ рассчитанная масса 927.4948 Да, $\Delta = 1.540$ (соединение 5), $\Delta = 1.335$ (соединение 6), $\Delta = 1.928$ (соединение 8)].

Соединение 9 ($t_{\rm R} = 5.72$ мин) содержит последовательно фрагменты глюкуроновой кислоты, глюкозы (или галактозы), ксилозы (или арабинозы), глюкозы (или галактозы). Масса [M + H]⁺ составляет 1089.5494 Да. В работе [8] описаны три соединения с подобными углеводными фрагментами: 3-О-[β-D-глюкопиранозил (1–2) α-L-арабинофуранозил (1–4) β-D-глюкуронопиранозид] 28-О-[β-D-глюкопиранозид] олеаноловой кислоты (тарасапонин IV), 3-О-[β -D-глюкопиранозил (1–3) α -L-арабинофуранозил (1–4) β -D-глюкуронопиранозид] 28-О-[β -D-глюкопиранозид] олеаноловой кислоты (стипулеанозид R₂) и 3-О-[α -L-арабинопиранозил (1–2) β -D-глюкопиранозил (1–3) β -D-глюкуронопиранозид] 28-О-[β -D-глюкопиранозид] олеаноловой кислоты (калопанакс-сапонин F) (C₅₃H₈₅O₂₃, рассчитанная масса 1089.5476 Да, Δ = 1.675).

Соединение 10 ($t_{\rm R} = 5.59$ мин) содержит последовательно углеводные фрагменты глюкуроновой кислоты, глюкозы (или галактозы), ксилозы (или арабинозы), глюкозы (или галактозы), глюкозы (или галактозы). Масса [M + H]⁺ составляет 1251.6063 Да. В литературе не найдено описанных соединений с подобными углеводными фрагментами.

Соединение 11 ($t_{\rm R} = 5.20$ мин) содержит последовательно углеводные фрагменты глюкозы (или галактозы), глюкозы (или галактозы), глюкозы (или галактозы), глюкозы (или галактозы), ксилозы (или арабинозы). Масса [М + Н]⁺ составляет 1237.6230 Да. В работе [4] описано соединение с подобными углеводными фрагментами: 3-О-[β-Dксилопиранозил (1–2) β-D-глюкопиранозил (1–3) β-D-галактопиранозид] 28-O-[β-D-глюкопиранозил (1-6) *β*-D-глюкопиранозид] олеаноловой кислоты (аралия-сапонин VII). Также в работе [5] описаны два соединения подобного состава: 3-О-[β-Dксилопиранозил (1–2) β-D-глюкопиранозил (1–3) β-D-глюкопиранозид] 28-О-[β-D-глюкопиранозил (1-6) β-D-глюкопиранозид] олеаноловой кислоты (аралия-сапонин XV) и 3-О-[β-D-ксилопиранозил (1-2) β-D-глюкопиранозил (1-3) β-D-галактопи-

№ соеди- нения	t _R , мин	<i>m/z</i> фрагментных ионов и протонированных молекул	<i>m/z</i> депротонированных молекул и депротонированных ионов-аддуктов с НСООН		
1	8.38	619.4205 [Ole + Glc (Gal) + H] ⁺ 439.3575 [(Ole - H ₂ O) + H] ⁺	663.4148 [M + HCOOH – H] ⁻ 617.4156 [M – H] ⁻		
2	7.92	633.4007 [Ole + Glc A + H] ⁺ 439.3575 [(Ole - H ₂ O) + H] ⁺	677.3940 [M + HCOOH – H] ⁻ 631.3871 [M – H] ⁻		
3	7.62	765.4429 [Ole + Glc A + Xyl (Ara) + H] ⁺ 633.4004 [Ole + Glc A + H] ⁺ 439.3573 [(Ole - H ₂ O) + H] ⁺	809.4374 [M + HCOOH – H] [–] 763.4304 [M – H] [–]		
4	7.33	795.4539 [Ole + Glc A + Glc (Gal) + H] ⁺ 633.4011 [Ole + Glc A + H] ⁺ 439.3568 [(Ole - H ₂ O) + H] ⁺	839.4484 [M + HCOOH – H] [–] 793.4421 [M – H] [–]		
5	7.15	927.4962 [Ole + Glc A + Glc (Gal) + Xyl (Ara) + H] ⁺ 795.4536 [Ole + Glc A + Glc (Gal) + H] ⁺ 633.4001 [Ole + Glc A + H] ⁺ 439.3568 [(Ole - H ₂ O) + H] ⁺	971.4910 [M + HCOOH – H] [–] 925.4847 [M – H] [–]		
6	6.88	927.4960 [Ole + GlcA + Glc (Gal) + Xyl (Ara) + H] ⁺ 795.4539 [Ole + Glc A + Glc (Gal) + H] ⁺ 633.4001 [Ole + Glc A + H] ⁺ 439.3572 [(Ole - H ₂ O) + H] ⁺	971.4915 [M + HCOOH – H] [–] 925.4847 [M – H] [–]		
7	6.14	795.4553 [Ole + Glc A + Glc (Gal) + H] ⁺ 633.4005 [Ole + Glc A + H] ⁺ 439.3574 [(Ole - H ₂ O) + H] ⁺	839.4487 [M + HCOOH – H] [–] 793.4418 [M – H] [–]		
8	5.96	927.4966 [Ole + Glc A + Glc (Gal) + Xyl (Ara) + H] ⁺ 795.4519 [Ole + Glc A + Glc (Gal) + H] ⁺ 765.4432 [Ole + Glc A + Xyl (Ara) + H] ⁺ 633.4002 [Ole + Glc A + H] ⁺ 439.3574 [(Ole - H ₂ O) + H] ⁺	971.4906 [M + HCOOH – H] [–] 925.4847 [M – H] [–]		
9	5.72	$\begin{aligned} &1089.5497 \left[\text{Ole} + \text{Glc} + \text{Glc} (\text{Gal}) + \text{Glc} (\text{Gal}) + \text{Xyl} (\text{Ara}) + \text{H} \right]^{+} \\ &957.5069 \left[\text{Ole} + \text{Glc} \text{A} + \text{Glc} (\text{Gal}) + \text{Glc} (\text{Gal}) + \text{H} \right]^{+} \\ &927.4957 \left[\text{Ole} + \text{Glc} \text{A} + \text{Glc} (\text{Gal}) + \text{Xyl} (\text{Ara}) + \text{H} \right]^{+} \\ &795.4538 \left[\text{Ole} + \text{Glc} \text{A} + \text{Glc} (\text{Gal}) + \text{H} \right]^{+} \\ &633.4003 \left[\text{Ole} + \text{Glc} \text{A} + \text{H} \right]^{+} \\ &439.3570 \left[(\text{Ole} - \text{H}_2\text{O}) + \text{H} \right]^{+} \end{aligned}$	1133.5438 [M + HCOOH – H] [–] 1087.5377 [M – H] [–]		
10	5.59	$\begin{split} &1251.6040 \ [\text{Ole} + \text{Glc A} + \text{Glc (Gal)} + \text{Glc (Gal)} + \text{Xyl (Ara)} + \\ &+ \text{Glc (Gal)} + \text{H}]^+ \\ &1119.5603 \ [\text{Ole} + \text{Glc A} + \text{Glc (Gal)} + \text{Glc (Gal)} + \text{Glc (Gal)} + \text{H}]^+ \\ &1089.5492 \ [\text{Ole} + \text{Glc A} + \text{Glc (Gal)} + \text{Glc (Gal)} + \text{Xyl (Ara)} + \text{H}]^+ \\ &957.5067 \ [\text{Ole} + \text{Glc A} + \text{Glc (Gal)} + \text{Glc (Gal)} + \text{H}]^+ \\ &927.4966 \ [\text{Ole} + \text{Glc A} + \text{Xyl (Ara)} + \text{Glc (Gal)} + \text{H}]^+ \\ &795.4539 \ [\text{Ole} + \text{Glc A} + \text{Glc (Gal)} + \text{H}]^+ \\ &633.4012 \ [\text{Ole} + \text{Glc A} + \text{H}]^+ \\ &439.3573 \ [(\text{Ole} - \text{H}_2\text{O}) + \text{H}]^+ \end{split}$	1295.5969 [М + НСООН – Н] ⁻ 1249.5885 [М – Н] ⁻		

Таблица 4. Масс-спектральные характеристики исследованных аралозидов

Таблица 4. Око

№ соеди- нения	t _R , мин	<i>m/z</i> фрагментных ионов и протонированных молекул	<i>m/z</i> депротонированных молекул и депротонированных ионов-аддуктов с НСООН
11	5.20	$\begin{split} &1237.6230 \ [\text{Ole} + \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \\ &+ \text{Xyl} \ (\text{Ara}) + \text{H}]^+ \\ &1105.5815 \ [\text{Ole} + \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \\ &+ \text{H}^+ \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \\ &+ \text{Glc} \ (\text{Gal}) + \text{Glc} \ (\text{Gal}) + \\ &+ \text{Glc} \ (\text{Gal}) + \\ &+ \text{H}^+ \ (\text{H}^+ \ \text{H}^+ \ H$	1281.6173 [М + НСООН — Н] ⁻ 1235.6014 [М — Н] ⁻

Примечание: Ole — олеаноловая кислота, Glc A — глюкуроновая кислота, Glc — глюкоза, Ara — арабиноза, Gal — галактоза, Xyl — ксилоза.

ранозид] 28-О-[β -D-глюкопиранозил (1–6) β -D-глюкопиранозид] олеаноловой кислоты (C₅₉H₉₇O₂₇, рассчитанная масса 1237.6212 Да, Δ = 1.516).

СПИСОК ЛИТЕРАТУРЫ

- 1. Писарев Д.И., Мартынова Н.А., Нетребенко Н.Н., Новиков О.О., Сорокопудов В.Н. Сапонины и их определение в корневищах аралии маньчжурской в условиях Белгородской области // Химия растительного сырья. 2009. № 4. С. 197.
- Ладыгина Е.Я., Сафронич Л.Н., Отряшенкова В.Э., Баландина И.А., Гринкевич Н.И., Сорокина А.А., Сокольский И.Н., Глызин В.И., Молодожникова Л.М., Митин Ю.С., Самылина И.А., Ермакова В.А. Химический анализ лекарственных растений. М.: Высшая школа, 1983. 176 с.
- Gao G., Lu Zh., Tao Sh., Zhang S., Wang F. Triterpenoid saponins with antifeedant activities from stem bark of Catunaregam spinosa (Rubiaceae) against Plutella xylostella (Plutellidae) // Carbohydr. Res. 2011. V. 346. P. 2200.
- 4. *Miyase T., Shiokawa K.-I., Zhang D.M., Ueno A.* Araliasaponins I–XI, triterpene saponins from the roots

of Aralia Decaisneana // Phytochemistry. 1996. V. 41. № 5. P. 1411.

- Miyase T., Sutoh N., Zhang D.M., Ueno A. Araliasaponins XII–XVIII, triterpene saponins from the roots of Aralia chinesis // Phytochemistry. 1996. V. 42. № 4. P. 1123.
- Sakai Sh., Katsumata M., Satoh Y., Nagasao M., Miyakoshi M., Ida Y., Shoji J. Oleanolic acid saponins from root bark of Aralia elata // Phytochemistry. 1994. V. 35. № 5. P. 1319.
- Hu M., Ogawa K., Sashida Y., Xiao P.-G. Triterpenoid glucuronide saponins from root bark of Aralia armata // Phytochemistry. 1995. V. 39. № 1. P. 179.
- Nhiem N.X., Lim H.Y., Kiem Ph.V., Minh Ch.V., Thu V.K., Tai B.H., Quang T.H., Song S.B., Kim Y.H. Oleananetype triterpene saponins from the bark of Aralia elata and their NF-kB inhibition and PPAR activation signal pathway // Bioorg. Med. Chem. Lett. 2011. V. 21. P. 6143.
- Satoh Y., Sakai Sh., Katsumata M., Nagasao M., Miyakoshi M., Ida Y., Shoji J. Oleanolic acid saponins from root-bark of Aralia elata // Phytochemistry. 1994. V. 16. № 1. P. 147.
- Song Sh.-J., Nakamura N., Ma Ch.-M., Hattori M., Xu S.-X. Five saponins from the root bark of Aralia elata // Phytochemistry. 2001. V. 56. P. 491.